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Symbolic Method on Trees

A binary tree is
— either a leaf [
o X — oran
and a :
s o O O and a right subtree

T(z)=14+T(z) X z x T(2)

1,2,5, 14,42, 132, 429. 1430, ...

Number of binary trees with 4 internal nodes
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Decomposing General Graphs



Generalizing Trees

Directed Acyclic Graphs

(DAGS)
cactus graphs %
block graphs

(cacti)

(clique trees)
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Generalizing Trees

Directed Acyclic Graphs

(DAGS)

Focus of this talk
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cactus graphs %
block graphs
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Cactus Graphs

A graphis a iff every edge is part of at most one cycle.
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Cactus Graphs

A graphis a iff every edge is part of at most one cycle.
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Did you mean: cacti graphs

A linear-time algorithm for solving the center problem on weighted cactus
graphs

YF Lan, YL Wang, H Suzuki - Information Processing Letters, 1999 - Elsevier

For a nontrivial graph G (V, E), the distance d (u, v) between vertices u and v is the length of

a shortest path p (u, v) in G if such a path exists. The eccentricity e (u) of a vertex u in a graph

is the distance from u to a vertex furthest from u. That is, e (u)= max {d (u, v)! ve V}. The

Cited by 28 Related articles All 6 versions Web of Science: 10 Cite Save More

H™™L] The obnoxious center problem on weighted cactus graphs

B Zmazek, J Zerovnik - Discrete Applied Mathematics, 2004 - Elsevier

The obnoxious center problem in a graph G asks for a location on an edge of the graph such
that the minimum weighted distance from this point to a vertex of the graph is as large as
possible. An algorithm is given which finds the obnoxious center on a weighted cactus graph
Cited by 32 Related articles All 5 versions Web of Science: 14 Cite Save More

Cactus graphs for genome comparisons

B Paten, M Diekhans, D Earl, JS John... - Journal of ..., 2011 - online.liebertpub.com
Abstract We introduce a data structure, analysis, and visualization scheme called a cactus
graph for comparing sets of related genomes. In common with multi-break point graphs and
A-Bruijn graphs, cactus graphs can represent duplications and general genomic

Cited by 40 Related articles All 4 versions Web of Science: 19 Cite Save More

Computing the weighted Wiener and Szeged number on weighted cactus
graphs in linear time

B Zmazek, J Zerovnik - Croatica Chemica Acta, 2003 - hrcak.srce.hr

Sazetak Cactus is a graph in which every edge lies on at most one cycle. Linear algorithms

for computing the weighted Wiener and Szeged numbers on weighted cactus graphs are
given. Graphs with weighted vertices and edges correspond to molecular graphs with

Cited by 29 Related articles All 3 versions Web of Science: 14 Cite Save More

The ratio of the irredundance number and the domination number for block-

cactus graphs
V Zverovich - Journal of Graph Theory, 1998 - eprints.uwe.ac.uk
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Prior Work

On the Number of Husimi Trees
Harary and Uhlenbeck (1952):

— proposed method for enumerating
free, unlabeled cacti
- derived functional equations for 3- and 4-cacti.

— promised to provide “a more systematic
treatment of the general case of pure
k-cacti” in a subsequent paper
- it appears they never published such a paper

For a pure Husimi tree consisting of quadrilaterals one has five types of
symmetry, illustrated by:

B8 A 8 \ A ! A A A
A 8 Ap——sB A—T—A A A

\ 0 RS |
D c B ¢ B a sb——J8 2 A
FIG. 2

If cf, ..., ¢ denote again the number of dissimilar quadrilaterals of these
symmetry types occurring in a given tree, then one has )
* = 4¢ + 23 + ¢; + 3¢, + ¢
c* g+ c+e+ e+
c;, ¢+ ¢ Lt cE

cy ¢y + .
Thus one gets from (6), since @ is of course again zero:

1 =p* — 3c; — 2; — ¢3 — (6¢)

o
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Prior Work

On the Number of Husimi Trees Enumeration of m-ary cacti
Harary and Uhlenbeck (1952): Miklés Bona et al. (1999):

— proposed method for enumerating
free, unlabeled cacti
- derived functional equations for 3- and 4-cacti.

— enumerated pure, plane,
unlabeled cacti.

— promised to provide “a more systematic
treatment of the general case of pure

k-cacti” in a subsequent paper

H 1 ~ s pm/sd
- it appears they never published such a paper B = 25w (%) ™
PaE P
and
Roun =23 0(d) (”;’;ﬁfﬁ) (19)
For a pure Husimi tree consisting of quadrilaterals one has five types of %
symmetry, illustrated by: = " os(p—mni+1 d d
Ron=3S 2t D5 ) ((n_’i/ ) /d> 11 ( k4 /d>, (79)
A B A B A——B A A A A = d ’ g# N
™ P " (p—mi+1) / /
~ £, Sn st ) p/d p/d
D ¢ 8 ¢ gl—la 8 8 A A Koun= ; p? ; ) ((ni - 1)/d> ]H¢z (nj/d>’ 0
i : the second summations being taken over all integers d such that s|d and d divides p and all
If cf, ..., ¢ denote again the number of dissimilar quadrilaterals of these components of il — &;
symmetry types occurring in a given tree, then one has ' N m o m-2 o .
I* = 4c! + 2 + c3 + 3¢t + ¢} Koy = 3 [Ty 21 (((:'l— ‘ ))//dd> 1l <n]'/2>’ &
= 4¢, A 3 4 s im1 L™ g i~ €h s \13/
* * * * * *
c‘ = ¢+ cl+c,’+ c,—}-cg and
Cpp = catea  to s (m = 1)/d 7 (ns/d
ey = i+ ¢ Koo = z=zl i my hzd‘b(d/s) (n; —ep)/d 1H¢, n;/d)’ (®2)
Thus one gets from (6), since a is of course again zero: the second sommations being taken over all pairs of integers h,d > 1 such that n;, # 0,s|d, and
* * * * * d divides h and all entries in N — E;. [m]
1 = p* — 3¢; — 2¢, — ¢3 — ¢4 (6¢)
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Exact enumeration of unlabeled, non-plane, pure n-cacti.

n=3 | 0,0,1,0,1,0,2,0,4,0,8,0,19,0,48,0,126,0, 355,0, 1037, . . .
n=4 | 0,0,0,1,0,0,1,0,0,3,0,0,7,0,0,25,0,0,88,0,0,366,0,...
n=5 | 0,0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,8,0,0,0,31,0,0,0,132, ...
n=6 | 0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,13,0,0,0,0,67,. ..
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Exact enumeration of unlabeled, non-plane, pure n-cacti.

n=3 |0,0,1,0,1,0,2,0,4,0,8,0,19,0,48,0,126, 0, 355,0,1037, . . .
n=4 | 0,0,0,1,0,0,1,0,0,3,0,0,7,0,0,25,0,0,88,0,0,366,0,...
n=5 | 0,0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,8,0,0,0,31,0,0,0,132, ...
n=6 | 0,0,0,0,0,1,0,0,0,041,0,0,0,0,4,0,0,0,0,13,0,0,0,0, 67, ...

Number of pure 3-cacti with 9 vertices

] %/NX\/\/\N\
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Exact enumeration of unlabeled, non-plane, pure n-cacti.

n=3 | 0,0,1,0,1,0,2,0,4,0,8,0,19,0,48,0,126,0,355,0, 1037, . ..

n—=4 | 0,00,1,0,0,1,0,0,3,0,0,7,0,0,25,0,0,88,0,0,366,0, . ..

n=5 | 0,0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,8,0,0,0,31,0,0,0,132, . ..

n=6 | 0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,13,0,0,0,0,67, ...

The first non-zero term is always 1
(corresponding to polygon)

7/16



Exact enumeration of unlabeled, non-plane, pure n-cacti.

n=3 | 0,0,1,0,1,0,2,0,4,0,8,0,19,0,48 0,126, 0,355,0,1037, ...

n—=4 | 0,0,0,1,0,0,1,0,0,3,0,0,7,0,0,25,0,0,88,0,0,366,0, ...

n=5 | 0,0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,8,0,0,0,31,0,0,0,132, . ..

n=6 | 0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,13,0,0,0,0,67, ...

Our approach is and than Bona et al.:

— can easily be extended to derive their result (plane cacti)
e.g. plane 5-cacti: 0, 0,0,0,1,0,0,0,1,0,0,0,3,0,0,0,17,0,0,0,102, ...

— methodology applicable to obtain many variations of cacti, including mixed cacti

7/16



Methodolgy: Overview

G=Zx(P+Sc)

P = SEQ_4 (£ + Sx)
Sx = Z X SEQ>1 (P)
Sc = CYC>2 (7))

0,0,1,0,1,0,2,0,
4,0,8,0,19,0,48,
0,126, 0, 355, 0,
1037, . ..
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Methodolgy: Overview

An Exact Enumeration of Distance-Hereditary Graphs

Cédric Chauve* Eric Fusy! Jérémie Lumbrosot

Abstract Theorem 4. The class DH of unrooted distance-hereditary

g — Z >< (7) —|_ S C ) Distance-hereditary graphs form an importan graphs is specified by
et oy e e vl dompentite ] DI =Tk +Ts +Ts5_s —Tis —Tsos (325
L S Z 8 Tk = SETs3(Z + 8¢ + 8x) (3.26)
P - EQ:4 ( + X) Ts = (2+% +8c) x 8¢ 327)
) g Tx—s =X x (8¢ + 8x) (3.28)
3 — Z S P Ts-s = SET2 (8¢) + SET2 (8x) (3.29)
X T >< EQ>1 ( Tsss =8¢ x 8¢ +8x x 8x (3.30)
X = SETs (Z + 8¢ + 8x) (3.31)
SC’ — CYC>2 (P) 8¢ = SET»2 (2 + X + 8x) (3.32)
= 8x = SEQ>2 (2+ X +8¢). (3.33)

Enumerations, Forbidden Subgraph Characterizations,
and the Split-Decomposition

Maryam Bahrani* Jérémie Lumbroso*

0,0,1,0,1,0,2,0,
4,0,8,0,19,0,48,

1037, . ..

Abstract

Forbidden characterizations may sometimes be the most nat-
ural way to describe families of graphs, and yet these char-

As far as we know, while these notions are part and parcel
of the work of graph theorists, they are usually not exploited
by analytic combinatorists. For forbidden minors, there is
the ing article of Bousquet-Mélou and Weller [4].

acterizations are usually very hard to exploit for
purposes.

By building on the work of Gioan and Paul (2012) and
Chauve et al. (2014), we show a methodology by which we
constrain a split-decomposition tree to avoid certain patterns,

For forbidden subgraphs or forbidden induced subgraphs, we
know of few papers, except because of the simple nature of
graphs [31], or because some other, alternate property is used
instead [5], or only asymptotics are determined [32].

PG, = Zu x (8¢ + 8x +K)
8¢ = SET22 (Z+g<+SX)

X = SET;Q (Z+5x)

8x = (Z-f—?) X SET>1 (Z+g<—|-8)()
X =8¢ x SET>1 (Z + Sx) + SET>2 (Z + Sx) (4.18) and Gioan, with inter-

therehy avaiding thy ing induced suboranhe in th We are concerned, in this paper, with forbidden induced
O 1 2 6 O 3 5 5 O Theorem 5. The class P§, of ptolemaic graphs rooted at a
9 9 9 ’ ’ vertex is specified by n induced subgraphs.

ively well-known graph
lomposition, could be a
(4. 1 5) In class called distance-
meration had until then
(4 1 6) /m result was the bound
bd that there are at most
by graphs on n vertices).
(4 17) version of this split-

ved the legibility of the

(4.19)
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Methodology: The Split Decomposition

Def. A graph-labeled tree is a pair (T, F), where T is a tree
and JF is a family of graphs, such that

— Every tree node v € V (T') is labeled with a graph G,, € F
— There is exactly one tree-edge for every vertex of G,
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Def. A splitin a graph is a bipartition of the
vertices into two subsets 1/; and V5 such that

— Each side has at least size 2

— The edges crossing the bipartition %} /
Induce a :
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Def. A graph-labeled tree is a pair (T, F), where T is a tree
and JF is a family of graphs, such that

— Every tree node v € V (T') is labeled with a graph G,, € F
— There is exactly one tree-edge for every vertex of G,

Def. A splitin a graph is a bipartition of the
vertices into two subsets 17 and 1/ such that Vo

— Each side has at least size 2

— The edges crossing the bipartition %} /
Induce a :

split

join
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Methodology: The Split Decomposition

Def. A graph-labeled tree is a pair (T, F), where T is a tree
and JF is a family of graphs, such that

— Every tree node v € V (T') is labeled with a graph G,, € F
— There is exactly one tree-edge for every vertex of G,

Def. A splitin a graph is a bipartition of the

vertices into two subsets 1 and 15 such that Vs
— Each side has at least size 2
— The edges crossing the bipartition Vi /
iInduce a :
split
join
— Can read adjacencies from paths.
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Methodology: The Split Decomposition

Decomposition base cases: Theorem (Cunningham ’'82):

The split decomposition tree into prime and

degenerate nodes is unique as long as
é: certain conditions are met.
A b
center V& Theorem:
. Cycles of size at least 5 are prime nodes.
extremities

e.g. — Gives a bijection between cactus graphs
<j and families of graph-labelled trees

10/16



Methodology: Characterization and Grammar

Characterization:

Cactus graphs can are in bijection with graph-labeled trees where

— internal nodes are and

— no polygons are adjacent;

— the centers of star nodes are attached to leaves; includes leaves
— the extremities of star nodes attached to polygons*~ for 2-cycles

This characterization can be captured using a symbolic grammar.

11/16



Methodology: Characterization an Grammar

’ . * . * ./O\
o I\ (3\0 ).

Grammar (unlabeled free pure k-cacti):

CG.

Cgo — Zo X (P + SC) Ze
P = UsEQx_1 (Z + Sx) .
SC SET>2 (P) Sc
Sx = Z x SETs1 (P) SET_p (A)
USEQ_,, (A)

&) /\\'/ |

k-cactus graph rooted at a vertex
distinguished leaf

polygon entered from a subtree
star entered from an extremity
star entered from its center

set of n (unordered) elements from A

undirected sequence of 1@ elements from A

12/16



Methodology: Unroating Subtleties

Where do we start decomposing from?

— unlabeled structures have symmetries
— different set of symmetries for different starting points (“roots”)
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Methodology: Unroating Subtleties

Where do we start decomposing from?

— unlabeled structures have symmetries
— different set of symmetries for different starting points (“roots”)

¢ Dissymmetry theorem (Bergeron et al. 98):

— allows us to correct for symmetries of trees
— proof by observing that the tree center (midpoint of diameter)
is distinguished by definition

o0—O0

'SRV o el
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Methodology: Unroating Subtleties

Where do we start decomposing from?
— unlabeled structures have symmetries
— different set of symmetries for different starting points (“roots”)

¢ Dissymmetry theorem (Bergeron et al. 98):

— allows us to correct for symmetries of trees
— proof by observing that the tree center (midpoint of diameter)
is distinguished by definition

BOE R

. Cycle-pointing (based on Pdlya theory):
— allows us to correct for symmetries of general graphs

— more difficult but preserves combinatorial nature of grammar

(eg. can be used to build random samplers)
13/16



Verifying the enumeration:
— proof of the characterization

(a) T is a clique-star tree;

Theorem 10 (split-decomposition tree characterization of
3-cacti). A graph G with the reduced split-decomposition
tree (T, F) is a triangular cactus graph if and only if

(b) the centers of all star-nodes are attached to leaves;
(c) the extremities of star-nodes are only attached to clique-

Veri

fication

nodes;
(d) every clique-node has degree 3.

Proof. By Lemma 12, we know that 3-cacti
exactly as the class of block graphs with
induced K~4.

Qe

e,

od
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(b) the centers of all star-nodes are attached to leaves;

(c) the extremities of star-nodes are only attached to clique-

fication

nodes;
(d) every clique-node has degree 3.

Proof. By Lemma 12, we know that 3-cacti (
exactly as the class of block graphs with
induced K~4.

b d
. .

od

— manual generation of
small instances

14/16



Verification

Verifying the enumeration:

— proof of the characterization — manual generation of

small instances

N3 (%)

Theorem 10 (split-decomposition tree characterization of
3-cacti). A graph G with the reduced split-decomposition
tree (T, F) is a triangular cactus graph if and only if

(a) T is a clique-star tree;

(b) the centers of all star-nodes are attached to leaves;

(c) the extremities of star-nodes are only attached to clique-

nodes;
(d) every clique-node has degree 3.

Proof. By Lemma 12, we know that 3-cacti »d

exactly as the class of block graphs with
induced K~4.

b d
. .

— brute force generation of small instances

class FourCactusGenerator(VertexIncrementalGenerator):

def __init_ (self, size):
initial = _nx.complete_graph(1)

self._operations = [ VI_C4 ]
super(FourCactusGenerator, self).__init_ (size = size, initial = initial)

class FiveCactusGenerator(VertexIncrementalGenerator):

def __init__(self, size):
initial = _nx.complete_graph(1)

self._operations = [ VI_C5 ]
super(FiveCactusGenerator, self).__init_ (size = size, initial = initial)

class SixCactusGenerator(VertexIncrementalGenerator):

def __init_ (self, size):
initial = _nx.complete_graph(1)

self._operations = [ VI_C6 ]
super(SixCactusGenerator, self).__init_ (size = size, initial = initial)

14/16



Conclusion

Summary
— Derived an for cactus graphs (previously unknown)
— Explored the split decomposition as a method for graph

enumeration, as first examined with analytic combinatorics by
Chauve et al. (2014), and extended by Bahrani and Lumbroso (2016)

— For the first time studied a graph class with a split decomposition tree
that contains nodes

Next Steps

— Asymptotics

— Parameter analysis

— Cycle-pointing and random sampling

— Consider other kinds of prime nodes (e.g. bipartite nodes are prime nodes
for parity graphs and were studied asymptotically by Shi and Lumbroso (2017),
but an exact enumeration is unknown)
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Thank you!
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