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Symbolic Method on Trees

TT
T T•T = [ ( ) symbolic specification

generating function

exact enumeration

T (z) = 1 + T (z)⇥ z ⇥ T (z)

A binary tree is
 — either a leaf
 — or an internal node,
      and a left subtree,
      and a right subtree

Number of binary trees with 4 internal nodes

•
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Decomposing General Graphs

?
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Generalizing Trees

Directed Acyclic Graphs
(DAGs)

block graphs
(clique trees)

cactus graphs
(cacti)

k-trees

3/16



Generalizing Trees

Directed Acyclic Graphs
(DAGs)

block graphs
(clique trees)

cactus graphs
(cacti)

k-trees

Focus of this talk
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Cactus Graphs
A graph is a cactus iff every edge is part of at most one cycle.

cactus

not cactus
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Cactus Graphs

cactus

not cactus

unlabeled
cactus

plane (vs. free)
cactus

labeled
cactus

A graph is a cactus iff every edge is part of at most one cycle.
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from Enumeration of m-ary Cacti (Bóna et al.)

pure
3-cactus

mixed
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Prior Work
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Prior Work

— promised to provide “a more systematic 
     treatment of the general case of pure
     k-cacti” in a subsequent paper
    - it appears they never published such a paper

On the Number of Husimi Trees
   Harary and Uhlenbeck (1952):

— proposed method for enumerating
     free, unlabeled cacti
    - derived functional equations for 3- and 4-cacti.
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Prior Work

— enumerated pure, plane,
     unlabeled cacti.

not easily
generalizable

hard to
extract

only plane cacti
complicated methods

— promised to provide “a more systematic 
     treatment of the general case of pure
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New Result
Exact enumeration of unlabeled, non-plane, pure n-cacti.

n = 3

n = 4

n = 5

n = 6

0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 19, 0, 48, 0, 126, 0, 355, 0, 1037, . . .

0, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0, 25, 0, 0, 88, 0, 0, 366, 0, . . .

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 8, 0, 0, 0, 31, 0, 0, 0, 132, . . .

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 13, 0, 0, 0, 0, 67, . . .
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Number of pure 3-cacti with 9 vertices
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New Result
Exact enumeration of unlabeled, non-plane, pure n-cacti.

n = 3

n = 4

n = 5

n = 6
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The first non-zero term is always 1 
(corresponding to polygon)
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Exact enumeration of unlabeled, non-plane, pure n-cacti.
n = 3

n = 4

n = 5

n = 6

0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 19, 0, 48, 0, 126, 0, 355, 0, 1037, . . .

0, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0, 25, 0, 0, 88, 0, 0, 366, 0, . . .

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 8, 0, 0, 0, 31, 0, 0, 0, 132, . . .

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 13, 0, 0, 0, 0, 67, . . .

Our approach is simpler and more general than Bóna et al.:

— methodology applicable to obtain many variations of cacti, including mixed cacti

e.g. plane 5-cacti: 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 17, 0, 0, 0, 102, . . .

— can easily be extended to derive their result (plane cacti)
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Methodolgy: Overview

G = Z ⇥ (P + SC)

P = Seq=4 (Z + SX)

SX = Z ⇥ Seq>1 (P)
SC = Cyc>2 (P)

symbolic
specification

computer algebra
system (CAS)

0, 0, 1, 0, 1, 0, 2, 0,

4, 0, 8, 0, 19, 0, 48,

0, 126, 0, 355, 0,

1037, . . .

split
decomposition
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Methodology: The Split Decomposition
Def. A graph-labeled tree is a pair            , where     is a tree
and      is a family of graphs, such that

— Every tree node                  is labeled with a graph 
— There is exactly one tree-edge for every vertex of
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Methodology: The Split Decomposition

Def. A split in a graph is a bipartition of the 
vertices into two subsets      and       such that

— Each side has at least size 2

Def. A graph-labeled tree is a pair            , where     is a tree
and      is a family of graphs, such that

— Every tree node                  is labeled with a graph 
— There is exactly one tree-edge for every vertex of

— The edges crossing the bipartition
induce a complete bipartite graph.

split

join

— Can read adjacencies from alternated paths.

•

•

•

•

9/16



Methodology: The Split Decomposition

— prime nodes:

— degenerate nodes:

clique
K

star
S

cycle
P

e.g.

Decomposition base cases:

center

extremities
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Methodology: The Split Decomposition

Theorem (Cunningham ’82):
The split decomposition tree into prime and
degenerate nodes is unique as long as
certain conditions are met.

Theorem:
Cycles of size at least 5 are prime nodes.

— prime nodes:

— degenerate nodes:

clique
K

star
S

cycle
P

e.g.

Decomposition base cases:

— Gives a bijection between cactus graphs
     and families of graph-labelled trees

center

extremities
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Methodology: Characterization and Grammar

Cactus graphs can are in bijection with graph-labeled trees where

— internal nodes are stars and polygons;
— no polygons are adjacent;
— the centers of star nodes are attached to leaves;
— the extremities of star nodes attached to polygons.

This characterization can be captured using a symbolic grammar.

includes leaves 
for 2-cycles

Characterization:
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Methodology: Characterization and Grammar

k-cactus graph rooted at a vertex
distinguished leaf
polygon entered from a subtree

star entered from its center
star entered from an extremity

set of nn (unordered) elements from AA 

undirected sequence of nn elements from AA 

Grammar (unlabeled free pure k-cacti):
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Methodology: Unrooting Subtleties
Where do we start decomposing from?
— unlabeled structures have symmetries
— different set of symmetries for different starting points (“roots”)•

•
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Methodology: Unrooting Subtleties
Where do we start decomposing from?
— unlabeled structures have symmetries
— different set of symmetries for different starting points (“roots”)•

•

Dissymmetry theorem (Bergeron et al. 98):
— allows us to correct for symmetries of trees
— proof by observing that the tree center (midpoint of diameter)
     is distinguished by definition

Cycle-pointing (based on Pólya theory):
— allows us to correct for symmetries of general graphs
— more difficult but preserves combinatorial nature of grammar
     (eg. can be used to build random samplers)
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Verification
Verifying the enumeration:

— proof of the characterization
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Verification
Verifying the enumeration:

— proof of the characterization — manual generation of
  small instances
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Verification
Verifying the enumeration:

— proof of the characterization — manual generation of
  small instances

— brute force generation of small instances
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Conclusion
Summary

Next Steps

— Derived an exact enumeration for cactus graphs (previously unknown)

— Parameter analysis

— Consider other kinds of prime nodes (e.g. bipartite nodes are prime nodes
     for parity graphs and were studied asymptotically by Shi and Lumbroso (2017),
     but an exact enumeration is unknown)

— Cycle-pointing and random sampling

— Explored the split decomposition as a generalizable method for graph
    enumeration, as first examined with analytic combinatorics by
    Chauve et al. (2014), and extended by Bahrani and Lumbroso (2016)
— For the first time studied a graph class with a split decomposition tree
     that contains prime nodes

— Asymptotics
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Thank you!
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