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One Functional Equation

(Folkore) Theorem [Bender, Canfield, Meir+Moon, ...]

Suppose that Φ(z, y) is a polynomial with Φ(0,0) = 0 and non-

negative coefficients that depends on z and is non-linear in y.

Then the power series solution y(z) =
∑
ynzn of the functional equation

y(z) = Φ(z, y(z))

satisfies (for some constants c, γ > 0)

yn = [zn] y(z) ∼ c · n−3/2γn. , n ≡ n0 mod d,

and yn = 0 for n 6≡ n0 mod d, where d ≥ 1 is the period of the equation.



One Functional Equation

Binary Trees. B(z) =
∑
n≥0

Bnz
n

B(z) = z(1 +B(z)2)

Bn ∼ c · n−3/22n , n ≡ 1 mod 2.



One Functional Equation

Squareroot Singularity

The asymptotic expansion

yn = [zn] y(z) ∼ c · n−3/2γn

is related to the universal squareroot singularity

y(z) = g(z)− h(z)

√
1−

z

z0

of the solution of y(z) = Φ(z, y(z)).

In particular we have γ = 1/z0.



One Functional Equation

Strongly connected positive systems

The same property holds for strongly connected positive polynomial

systems:

y1 = Φ1(z, y1, . . . , yk),
...

yk = Φk(z, y1, . . . , yk).

For all j = 1, . . . , k we have

yj,n = [zn] yj(z) ∼ cj · n−3/2γn , n ≡ nj mod d,



Planar Maps

A planar map is a connected planar graph, possibly with loops and

multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-

tinguished, and are called the root-vertex and root-edge, respectively.

The face to the right of e is called the root-face and is usually taken

as the outer face.



Planar Maps

Generating functions

Mn,k ... number of maps with n edges and outer-face-valency k

M(z, u) =
∑
n,k

Mn,ku
kzn

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z,1)

u− 1
.

u ... “catalytic variable”



Planar Maps

Mn =
∑
k

Mn,k ... number of rooted maps with n edges [Tutte]

Mn =
2(2n)!

(n+ 2)!n!
3n

The proof is given with the help of generating functions and the so-

called quadratic method.

Asymptotics:

Mn ∼ c · n−5/212n



The Quadratic Method

Completing the square leads to[
2u2z(1− u)M(z, u)− (1− u+ u2z)

]2
= H(z, u,M(z,1))

with

H(z, u, y) = 4(u− 1)u3z2y + u4z2 − 4u4z + 6u3z − 2u2z + u2 − 2u+ 1.

General Form:

[G1(z, u, y(z))M(z, u) +G2(z, u, y(z))]2 = H(z, u, y(z))

where y(z) abbreviates M(z,1).



The Quadratic Method

[G1(z, u, y(z))M(z, u) +G2(z, u, y(z))]2 = H(z, u, y(z))

Key observation:

∃u(z) with H(z, u(z), y(z)) = 0 =⇒ Hu(z, u(z), y(z)) = 0

Quadratic Method

1. Solve the system H(z, u(z), y(z)) = 0, Hu(z, u(z), y(z)) = 0

2. M(z,1) = y(z)

3. M(z, u) =
(√

H(z, u, y(z))−G2(z, u, y(z))
)
/G1(z, u, y(z)).



The Quadratic Method

Planar Maps

ad 1. u = u(z) and y(z) = M(z,1) are determined by

z =
(1− u)(2u− 3)

u2
, M(z,1) = −u

3u− 4

(2u− 3)2

ad 2. Elimination gives an equation for M = M(z,1):

27z2M2 − 18zM +M + 16z − 1 = 0

and consequently

M(z,1) = −
1

54z2

(
1− 18z − (1− 12z)3/2

)
=

∑
n≥0

2(2n)!

(n+ 2)!n!
3nzn.

ad 3.

M(z, u) =

√
H(z, u,M(z,1)) + 1− u+ u2z

2u2z(1− u)
.



The Quadratic Method

Planar Maps

The singular behavior

M(z,1) = −
1

54z2

(
1− 18z − (1− 12z)3/2

)
of the form (1−12z)3/2 is directely related to the asymptotic expansion

Mn ∼
2
√
π
· n−5/212n.



Universal Asymptotics for Catalytic Equations

THEOREM

Suppose that Q(y0, y1, z, v) is a polynomial with non-negative coef-

ficients that is non-linear in y0, y1 (and depends on y0, y1) and F (v)

a non-negative polynomial in v.

Then the power series solution M(z, v) =
∑
Mn,kz

nvk of the functional

equation

M(z, v) = F (v) + zQ

(
M(z, v),

M(z, v)−M(z,0)

v
, z, v

)

satisfies (for some constants c, γ > 0)

Mn =
∑
k

Mn,k = [zn]M(z,0) ∼ c · n−5/2γn. , n ≡ n0 mod d,

and Mn = 0 for n 6≡ n0 mod d, where d ≥ 1 is the period of the equation.



Universal Asymptotics for Catalytic Equations

Algebraic function [Bousquet-Melou+Jehanne]

For all polynomials Q(y0, y1, z, v) and F (u) there exists a unique power

series solution M(z, v) of the equation

M(z, v) = F (v) + zQ

(
M(z, v),

M(z, v)−M(z,0)

v
, z, v

)
and the function M(z, v) is algebraic.



Universal Asymptotics for Catalytic Equations

Planar Maps

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z,1)

u− 1
.

With u = v + 1 and M̃(z, v) = M(z, v + 1) we get

M̃(z, v) = 1 + z(v + 1)

(
(v + 1)M̃(z, v)2 + M̃(z, v) +

M̃(z, v)− M̃(z,0)

v

)
.

F (v) = 1, Q(y0, y1, z, v) = y2
0(v + 1)2 + y0(v + 1) + y1(v + 1).



Universal Asymptotics for Catalytic Equations

Bipartite Planar Maps (or Eulerian planar maps by duality)

E(z, u) = 1 + zu2E(z, u)2 + u2z
E(z, u)− E(z,1)

u2 − 1
.

With u2 = v + 1 and Ẽ(z, v) = E(z,
√

1 + v) we get

Ẽ(z, v) = 1 + z(v + 1)Ẽ(z, v)2 + (v + 1)z
Ẽ(z, v)− Ẽ(z,0)

v
.

F (v) = 1, Q(y0, y1, z, v) = y2
0(v + 1) + y1(v + 1).



Universal Asymptotics for Catalytic Equations

2-Connected Planar Maps

B(z, u) = z2u+ zuB(z, u) + u(z +B(z, u))
B(z, u)−B(z,1)

u− 1
.

With u = v + 1 and B̃(z, v) = B(z, v + 1) we get

B̃(z, v) = z2(v + 1) + z(v + 1)B̃(z, v) + (v + 1)(z + B̃(z, v))
B̃(z, v)− B̃(z,0)

v
. .

This is not precisely of the above type but it also works.



Universal Asymptotics for Catalytic Equations

Planar Triangulations

T (z, u) = (1−uT (z, u))+(z+u)T (z, u)2+z(1−uT (z, u))
T (z, u)− T (z,0)

u
.

With u = v and T̃ (z, v) = T (z, u)/(1− uT (z, u)) we get

T̃ (z, v) = 1 + vT̃ (z, v) + z(1 + T̃ (z, v))
T̃ (z, v)− T̃ (z,0)

v
. .

This is (again) not precisely of the above type but it also works.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Let P (x0, x1, z, v) be an analytic function such that (y(z) = M(z,0))

P (M(z, v), y(z), z, v) = 0.

By taking the derivative with respect to v we get

Px0(M(z, v), y(z), z, v)Mv(z, v) + Pv(M(z, v), y(z), z, v) = 0.

Key obervation:

∃ v(z) : Pv(M(z, v(z)), y(z), z, v(z)) = 0=⇒Px0(M(z, v(z)), y(z), z, v(z)) = 0

Thus, with f(z) = M(z, v(z)) we get the system for f(z), y(z), u(z)

P (f(z), y(z), z, v(z)) = 0

Px0(f(z), y(z), z, v(z)) = 0

Pv(f(z), y(z), z, v(z)) = 0.

Remark: For the quadratic case this just reduces to the quadratic
method.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Set (as given in our case)

P (x0, x1, z, v) = F (v) + zQ(x0, (x0 − x1)/v, z, v)− x0.

Then the system P = 0, Px0 = 0, Pv = 0 rewrites to

f(z) = F (v(z)) + zQ(f(z), w(z), z, v(z)),

v(z) = zv(z)Qy0(f(z), w(z), z, v(z)) + zQy1(f(z), w(z), z, v(z)),

w(z) = Fv(v(z)) + zQv(f(z), w(z), z, v(z)) + zw(z)Qy0(f(z), w(z), z, v(z)),

where

w(z) =
f(z)− y(z)

v(z)
.

This is a positive strongly connected polynomial system.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Thus, by the Folklore Theorem for Systems the solution functions
f(z), v(z), w(z) have a squareroot singularity at some common sin-
gularity z0:

f(z) = g1(z)− h1(z)

√
1−

z

z0
,

v(z) = g2(z)− h2(z)

√
1−

z

z0
,

w(z) = g3(z)− h3(z)

√
1−

z

z0
.

=⇒ y(z) = f(z)− v(z)w(z) has also a squareroot singularity at z0

y(z) = g4(z)−h4(z)

√
1−

z

z0
= a0+a1

√
1−

z

z0
+a2

(
1−

z

z0

)
+a3

(
1−

z

z0

)3/2

+· · ·

but maybe there are cancellations of coefficients aj (and actually
this happens!!!).



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

We have P = Py0 = 0 for y0 = f(z0), y1 = y(z0), z = z0, v = v(z0).

Hence the Weierstrass Preparation Theorem implies that P can be

represented by

P (y0, y1, z, v) = K(y0, y1, z, v)
(
(y0 −G(y1, z, v))2 −H(y1, z, v)

)
with analytic function K,G,H with K 6= 0.

The relations P = 0, Px0 = 0, Pv = 0 imply

H(y(z), z, v(z)) = 0, Hv(y(z), z, v(z)) = 0

Furthermore for the critical point y1 = y(z0), z = z0, v = v(z0) we also

have

Hvv(y(z0), z0, v(z0) = 0.



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

Lemma. Suppose that y0, z0, v0 are complex numbers and that H(z, v, y)
is a function that is analytic at (y0, z0, v0) and satisfies the properties

H(y0, z0, v0) = 0, Hu(y0, z0, v0) = 0, Huu(y0, z0, v0) = 0

and (for (y, z, v) = (y0, z0, v0)):

Hy 6= 0, Hvy 6= 0, Hvvv 6= 0, HzHvy 6= HyHvz

Then the system of functional equations

H(y(z), z, v(z)) = 0, Hu(y(z), z, v(z)) = 0

has precisely two solutions v(z) and y(z) with v(z0) = v0 and y(z0) = y0
which are given by

v(z) = g1(z)± h(z)

√
1−

z

z0
,

y(z) = g2(z)± h2(z)

(
1−

z

z0

)3/2

in a neighbourhood of z0.



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps

1. Hv(z, v, y) = 0 =⇒ y = Y (z, v)

2. H(z, v, Y (z, v)) = 0 =⇒ v = v(z)

3. y(z) = Y (z, v(z))



The Analytic Quadratic Method

ad 1. Hv(z, v, Y (z, v)) = 0

Implicit function theorem =⇒ Y (z, v) analytic at (z0, v0) but

Yv(z0, v0) = −
Hvv

Hvy
= 0.

ad 2. H(z, v, Y (z, v)) = 0, v = v(z)

Folklore Theorem =⇒ v(z) = g1(z)± g2(z)
√

1− z
z0



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps

ad 3. y(z) = Y (z, v(z))

Yv(z0, v0) = 0 =⇒

y(z) = Y (z, v(z))

= y0 + Yz(z0, v0)(z − z0) +
1

2
Yvv(z0, v0)(v(z)− v0)2

+ Yvz(z0, v0)(z − z0)(v(z)− v0) +
1

6
Yvvv(z0, v0)(v(z)− u0)3

+O((z − z0)2)

= h1(z)± h2(z)

(
1−

z

z0

)3/2



Two Ways of Seeing the Quadratic Method

Summing up

1. y(z) = M(z,0) has a squareroot singularity at z0 with possible

cancellations of coefficients of the singular expansions.

2. y(z) = g2(z)± h2(z)
(
1− z

z0

)3/2

3. It is possible to check that h2(z0) 6= 0.

4. Thus the dominant singularity of y(z) is of the form (1− z/z0)3/2

which leads to the (universal) behavior of Mn = [zn]M(z,0) ∼
cn−5/2z−n0 .



Extensions

• Systems of (Catalytic) Equations

• Additional counting parameters which lead to central limit theo-

rems (via Hwang’s Quasi-Power-Theorem)

• ...



Thank You!


