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One Functional Equation

(Folkore) Theorem [Bender, Canfield, Meir+Moon, ...]

Suppose that |[®(z,y)| is a polynomial with ©(0,0) = 0 and non-
negative coefficients that depends on z and is non-linear in y.

Then the power series solution y(z) = > ynz™ of the functional equation

y(z) = ®(z,y(2))

satisfies (for some constants ¢,v > 0)

—3/2777,.

yn = [2"]y(z) ~c-n n = ng mod d,

and yp, = 0 for n 2 ng mod d, where d > 1 is the period of the equation.
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One Functional Equation

Binary Trees. B(z) = ) Bpz"
n>0

B(z) = 2(1 + B(2)?)

By, ~c-n , m=1mod 2.




One Functional Equation

Squareroot Singularity

T he asymptotic expansion

yn = [2"]y(2) ~ ¢ -n~3/24"

IS related to the universal squareroot singularity

y(2) = g(2) — h(2),/1 - %

of the solution of y(z) = ®(z,y(z)).

In particular we have v = 1/zg.



One Functional Equation

Strongly connected positive systems

The same property holds for strongly connected positive polynomial
systems:

y1 = P1(2, 91, -, Yi),

yr = Pr(z, 91, -, Yi)-

For all y =1,...,k we have

—3/2 _
yin = [2"1yj(z) ~¢cj-n 3/ ~™ n =n; mod d,
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Planar Maps

N

A planar map is a connected planar graph, possibly with loops and
multiple edges, together with an embedding in the plane.

A map is rooted if a vertex v and an edge e incident with v are dis-
tinguished, and are called the root-vertex and root-edge, respectively.
The face to the right of e is called the root-face and is usually taken
as the outer face.



Planar Maps

Generating functions

M, . ... number of maps with n edges and outer-face-valency k

Y

M(z,u) =) Mn’kukzn
n,k

uM (z,u) —M(z,l)'
u—1

M(z,u) =14 zu°M(z,u)? + uz

u ... ‘“‘catalytic variable”



Planar Maps

Mp =) M, ... number of rooted maps with n edges [Tutte]
k

_2@2n) _,
Mn = (n + 2)!n!3

The proof is given with the help of generating functions and the so-
called quadratic method.

Asymptotics:

My, ~ c - n~5/21on




T he Quadratic Method

Completing the square leads to

2u%2(1 — w)M (z,u) — (1 —u+u2)|” = H(z,u, M(z,1))

with

H(z,u,y) = 4(u— Du2y + u*2? — 4u*2 + 6u32 — 2u®2 4+ u? — 2u + 1.

General Form:

[G1 (2, u, y(2)) M (2, u) + Ga(z,u,y(2))]* = H(z,u,y(2))

where y(z) abbreviates M(z,1).



T he Quadratic Method

[G1(2,u,y(2)) M (z,u) + Go(z,u,y(2))]? = H(z,u,y(2))

Key observation:

Ju(z) with H(z,u(z),y(2)) =0 — Hy(z,u(z),y(z)) =0

Quadratic Method
1. Solve the system H(z,u(z),y(z)) =0, Hy(z,u(z),y(z)) =0
2. M(z,1) =y(z)

3. M) = (HGu,y(2) — Galz,u,y(2)) ) /G (2, u,4(2)).




T he Quadratic Method

Planar Maps

ad 1. u=wu(z) and y(z) = M(z,1) are determined by
3u—4

(1 —u)(2u — 3)

u2

., M(z,1) = —

u(Qu — 3)2

ad 2. Elimination gives an equation for M = M(z,1):

272°M?2 —182:M + M + 162 —1 =0

and consequently

M(z,1) = —

1— 18z —
5422( ®

(1 — 122)3/2

ad 3.

)=%

n>0

2(2n)!

(n 4+ 2)!n!

M(z,u) =

2u2z(1l — u)

\/H(z,u,M(z,l))—l—l—u—I—u2z

n

n



T he Quadratic Method

Planar Maps

The singular behavior

1

M(z1) = 5422

(1 — 182 —[(1 — 122)3/2 )

of the form (1—122)3/2 is directely related to the asymptotic expansion

2
My, ~ —— . n=5/2107,

Nz




Universal Asymptotics for Catalytic Equations

THEOREM

Suppose that |Q(yo,vy1,2,v) | is a polynomial with non-negative coef-
ficients that is non-linear in yg,y; (and depends on yg,y1) and F(v)
a non-negative polynomial in w.

Then the power series solution M(z,v) = ZMn,kz”vk of the functional
equation

M(z,v) = F(v) + 2Q (M(z, v), M(z,v) = M(z, O),z, v)

v

satisfies (for some constants ¢,v > 0)

M, = Z:]Wn’;f = ["] M(z,0) ~ c- n_5/27n. ,  n =mng modd,
k

and M, = 0 for n 2 ng mod d, where d > 1 is the period of the equation.



Universal Asymptotics for Catalytic Equations

Algebraic function [Bousquet-Melou+4Jehanne]

For all polynomials Q(yo,vy1,2,v) and F(u) there exists a unique power
series solution M(z,v) of the equation

M(z,v) — M(z,0) N v)

v

M(z0) = F(v) 4 2Q (M<z, 0,

and the function M(z,v) is algebraic.



Universal Asymptotics for Catalytic Equations

Planar Maps

uM (z,u) — M(z, 1).

u— 1

M(z,u) =1+ 2u’M(z,u)? + uz

With u =v+ 1 and M(z,v) = M(z,v+ 1) we get

M(z,v) — M(z,0)

M(z,v) =14 2(v+1) ((v + DM (2,0)2 + N (2,v) +

v

)

F(v)=1, Qo,y1,2v) =y5(w+1)?+yo(v+1)+y1(v+1).




Universal Asymptotics for Catalytic Equations

Bipartite Planar Maps (or Eulerian planar maps by duality)

QZE(z, u) — F(z, 1).

E(z,u) =14 20°E(2,u)? 4+ u 5
uc — 1

With u2 = v+ 1 and E(z,v) = E(z,/1 F v) we get

E(z,v) — E(z,0) |

v

E(z,0) =14+ 2(v+ 1DE(z,0)°+ (v+ 1)z

F(U) — 17 Q(yC))ylazav) :y8(0+1)‘|‘y1(v+1)



Universal Asymptotics for Catalytic Equations

2-Connected Planar Maps

B(z,u) — B(z, 1).

u— 1

B(z,u) = 2%u 4+ 2uB(z,u) + u(z + B(z,u))

With u =v+ 1 and B(z,v) = B(z,v+ 1) we get

B(z,v) — B(Z,O).

v

B(z,v) =2°(v+ 1)+ 2(v+ 1)B(2,v) + (v+ 1)(z + B(z,v))

This is not precisely of the above type but it also works.



Universal Asymptotics for Catalytic Equations

Planar Triangulations

T(z,u) — T(Z,O).

T(z,u) = (1—uT(z,u))+G4+u)T(z,0)°+2(1—uT(z,u))

With v = v and T(z,v) = T(z,u) /(1 —uT(z,u)) we get

T(z,v) —T(z,O)”

v

T(z,v) =14+ 0vT(z,0) +2(1 +T(z,0v))

This is (again) not precisely of the above type but it also works.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Let P(xp,x1,2,v) be an analytic function such that (y(z) = M(z,0))

P(M(z,v),y(z),z,v) =0.

By taking the derivative with respect to v we get

Pro(M(z,v),y(2), 2,v) My(2z,v) + Po(M(2,v),y(z),2,v) = 0.

Key obervation:

Jv(z) 1 Po(M(z,v(2)),y(z),2,v(2)) = 0= Pry(M(2,v(2)),y(2),2,v(2)) =0

Thus, with f(z) = M(z,v(z)) we get the system for f(z),y(2),u(z)

P(f(2),y(2),2,v(z)) =0
Pro(£(2),y(2), 2,v(2)) = 0
Py(f(2),y(2),2,v(z)) = 0.
Remark: For the quadratic case this just reduces to the quadratic
method.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Set (as given in our case)

P(zg,71,2,v) = F(v) + 2Q(x9, (xg — 1) /v, 2,v) — 0.

Then the system P =0, Py =0, P, = 0 rewrites to

f(z) = F(v(2)) + 2Q(f(2),w(2), 2,v(2)),

v(z) = 20(2)Qy (f(2), w(z), z,v(2)) + 2Qy, (f(2), w(z), z,v(2)),

w(z) = Fp(v(2)) + 2Qu(f(2), w(2), 2,v(2)) + 2w(2)Qyo (f(2), w(2), 2,v(2)),
where

_ &) -y

w(z) ()

This is a positive strongly connected polynomial system.



Two Ways of Seeing the Quadratic Method

Bousquet-Melou+4Jehanne - Approach

Thus, by the Folklore Theorem for Systems the solution functions
f(z),v(2),w(z) have a squareroot singularity at some common sin-
gularity zg:

F(2) = g1(2) — h1(2), /1 — —O
v(2) = go(2) — ho(2) /1 — —o
w(z) = g3(2) — ha(2),/1 — —O

—> y(z) = f(2) —v(2)w(z) has also a squareroot singularity at zg

. 3/2
(Z) — 94(z) h4(z)\/ l——= CLO"‘al”l — ——I-CL2 <l — —> —|—a3 (]_ — %> +4-.

but maybe there are cancellatlons of coeffncnents a; (and actually
this happens!!l).



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

We have |P = Py, = 0| for yo = f(20),y1 = y(20),2 = z0,v = v(20).
Hence the Weierstrass Preparation Theorem implies that P can be
represented by

P(y0,y1, 2, v) = K(y0,v1,2v) ((vo — G(y1,2,v))* — H(y1,2,v))

with analytic function K, G, H with K # 0.

The relations P =0, Py, =0, P, = 0 imply

H(y(z),z,v(2)) =0, Hy(y(2),2,v(z)) =0

Furthermore for the critical point y; = y(z2g), 2 = 20,v = v(zg) we also
have

va(y(Z’O), 20> U(ZO) = 0.




Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

Lemma. Suppose that yg, 20, vg are complex numbers and that H(z, v, y)
is a function that is analytic at (yo, z0,vg) and satisfies the properties

H(yo,z20,v0) =0, Hu(yo,z0,v0) =0, Huu(yo,20,v0) =0
and (for (y,z,v) = (¥0, 20,v0)):

Hy # O, H’Uy # O, H’U’U’U # O, HszUy # Hvaz
Then the system of functional equations

H(y(Z),Z,’U(Z)) — 07 Hu(y(Z),Z,’U(Z)) — O
has precisely two solutions v(z) and y(z) with v(zg) = vg and y(zg) = yo
which are given by

v(z) =g1(2) £ h(2), /1 - —O

B L\ 3/2
y(2) = go(z) + ho(z2) (1 — —)

20
in @ neighbourhood of zg.



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps
1. Hy(z,v,y) =0 —= y=Y(z,v)
2. H(z,v,Y(z,v)) =0 — v=uv(2)

3. y(z) =Y (z,v(2))



T he Analytic Quadratic Method

ad 1. Hy(z,v,Y(z,v)) =0

Implicit function theorem — Y (z,v) analytic at (zg,vg) but

H’U’U
vay

= 0.

Yu(20,v0) = —

ad 2. H(z,v,Y(z,v)) =0, v =v(2)

Folklore Theorem = v(z) = g1(2) £ g2(2) /1 -



Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps
ad 3. y(z) =Y (z,v(2))

Yy(20,v09) = 0 =

y(=) =¥ (2, 0(2))
= yo + Y2 (20,0) (= — 20) + 5 Yeu (20, 10) () — v0)?
+ Yo (20,00) 2 = 20)(0(2) — 10) + <Youu (20,80 (v(2) — wo)?

+ O((z — 20)?)
_\3/2
= h1(2) £ ho(2) (1 - —>

<0



Two Ways of Seeing the Quadratic Method

Summing up

1. y(z) = M(2,0) has a squareroot singularity at zg with possible
cancellations of coefficients of the singular expansions.

)3/2

2. y(2) = g2(2) £ ha(2) (1 - £

3. It is possible to check that ho(zg) # O.

4. Thus the dominant singularity of y(z) is of the form | (1 — z/zo)3/2

which leads to the (universal) behavior of M, = [z"|M(z,0) ~

—5/2_—n
cn /zo )




Extensions

e Systems of (Catalytic) Equations

e Additional counting parameters which lead to central limit theo-
rems (via Hwang’'s Quasi-Power-Theorem)



T hank You!



