UNIVERSAL ASYMPTOTICS FOR POSITIVE CATALYTIC FUNCTIONAL EQUATIONS

Michael Drmota*

joint work with Marc Noy and Guan-Ru Yu
Institute of Discrete Mathematics and Geometry
TU Wien
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

* supported by the Austrian Science Foundation FWF, grant F5002.

AofA 2017, Princeton, June 19-23, 2017.

One Functional Equation

(Folkore) Theorem [Bender, Canfield, Meir+Moon, ...]

Suppose that $\Phi(z, y)$ is a polynomial with $\Phi(0,0)=0$ and nonnegative coefficients that depends on z and is non-linear in y.

Then the power series solution $y(z)=\sum y_{n} z^{n}$ of the functional equation

$$
y(z)=\Phi(z, y(z))
$$

satisfies (for some constants $c, \gamma>0$)

$$
y_{n}=\left[z^{n}\right] y(z) \sim c \cdot n^{-3 / 2} \gamma^{n} ., \quad n \equiv n_{0} \bmod d
$$

and $y_{n}=0$ for $n \not \equiv n_{0} \bmod d$, where $d \geq 1$ is the period of the equation.

One Functional Equation

Binary Trees. $B(z)=\sum_{n \geq 0} B_{n} z^{n}$

$$
B(z)=z\left(1+B(z)^{2}\right)
$$

$$
B_{n} \sim c \cdot n^{-3 / 2} 2^{n}, \quad n \equiv 1 \bmod 2
$$

One Functional Equation

Squareroot Singularity

The asymptotic expansion

$$
y_{n}=\left[z^{n}\right] y(z) \sim c \cdot n^{-3 / 2} \gamma^{n}
$$

is related to the universal squareroot singularity

$$
y(z)=g(z)-h(z) \sqrt{1-\frac{z}{z_{0}}}
$$

of the solution of $y(z)=\Phi(z, y(z))$.

In particular we have $\gamma=1 / z_{0}$.

One Functional Equation

Strongly connected positive systems

The same property holds for strongly connected positive polynomial systems:

$$
\begin{aligned}
y_{1} & =\Phi_{1}\left(z, y_{1}, \ldots, y_{k}\right), \\
& \vdots \\
y_{k} & =\Phi_{k}\left(z, y_{1}, \ldots, y_{k}\right) .
\end{aligned}
$$

For all $j=1, \ldots, k$ we have

$$
y_{j, n}=\left[z^{n}\right] y_{j}(z) \sim c_{j} \cdot n^{-3 / 2} \gamma^{n}, \quad n \equiv n_{j} \bmod d
$$

Planar Maps

A planar map is a connected planar graph, possibly with loops and multiple edges, together with an embedding in the plane.
A map is rooted if a vertex v and an edge e incident with v are distinguished, and are called the root-vertex and root-edge, respectively. The face to the right of e is called the root-face and is usually taken as the outer face.

Planar Maps

Generating functions

$M_{n, k} \ldots$ number of maps with n edges and outer-face-valency k

$$
\begin{aligned}
M(z, u)= & \sum_{n, k} M_{n, k} u^{k} z^{n} \\
& M(z, u)=1+z u^{2} M(z, u)^{2}+u z \frac{u M(z, u)-M(z, 1)}{u-1}
\end{aligned}
$$

u... "catalytic variable"

Planar Maps

$M_{n}=\sum_{k} M_{n, k} \ldots$ number of rooted maps with n edges [Tutte]

$$
M_{n}=\frac{2(2 n)!}{(n+2)!n!} 3^{n}
$$

The proof is given with the help of generating functions and the socalled quadratic method.

Asymptotics:

$$
M_{n} \sim c \cdot n^{-5 / 2} 12^{n}
$$

The Quadratic Method

Completing the square leads to

$$
\left[2 u^{2} z(1-u) M(z, u)-\left(1-u+u^{2} z\right)\right]^{2}=H(z, u, M(z, 1))
$$

with

$$
H(z, u, y)=4(u-1) u^{3} z^{2} y+u^{4} z^{2}-4 u^{4} z+6 u^{3} z-2 u^{2} z+u^{2}-2 u+1
$$

General Form:

$$
\left[G_{1}(z, u, y(z)) M(z, u)+G_{2}(z, u, y(z))\right]^{2}=H(z, u, y(z))
$$

where $y(z)$ abbreviates $M(z, 1)$.

The Quadratic Method

$$
\left[G_{1}(z, u, y(z)) M(z, u)+G_{2}(z, u, y(z))\right]^{2}=H(z, u, y(z))
$$

Key observation:

$$
\exists u(z) \text { with } H(z, u(z), y(z))=0 \quad \Longrightarrow \quad H_{u}(z, u(z), y(z))=0
$$

Quadratic Method

1. Solve the system $H(z, u(z), y(z))=0, \quad H_{u}(z, u(z), y(z))=0$
2. $M(z, 1)=y(z)$
3. $M(z, u)=\left(\sqrt{H(z, u, y(z))}-G_{2}(z, u, y(z))\right) / G_{1}(z, u, y(z))$.

The Quadratic Method

Planar Maps

ad 1. $u=u(z)$ and $y(z)=M(z, 1)$ are determined by

$$
z=\frac{(1-u)(2 u-3)}{u^{2}}, \quad M(z, 1)=-u \frac{3 u-4}{(2 u-3)^{2}}
$$

ad 2. Elimination gives an equation for $M=M(z, 1)$:

$$
27 z^{2} M^{2}-18 z M+M+16 z-1=0
$$

and consequently

$$
M(z, 1)=-\frac{1}{54 z^{2}}\left(1-18 z-(1-12 z)^{3 / 2}\right)=\sum_{n \geq 0} \frac{2(2 n)!}{(n+2)!n!} 3^{n} z^{n}
$$

ad 3.

$$
M(z, u)=\frac{\sqrt{H(z, u, M(z, 1))}+1-u+u^{2} z}{2 u^{2} z(1-u)}
$$

The Quadratic Method

Planar Maps

The singular behavior

$$
M(z, 1)=-\frac{1}{54 z^{2}}\left(1-18 z-(1-12 z)^{3 / 2}\right)
$$

of the form $(1-12 z)^{3 / 2}$ is directely related to the asymptotic expansion

$$
M_{n} \sim \frac{2}{\sqrt{\pi}} \cdot n^{-5 / 2} 12^{n}
$$

Universal Asymptotics for Catalytic Equations

THEOREM

Suppose that $Q\left(y_{0}, y_{1}, z, v\right)$ is a polynomial with non-negative coefficients that is non-linear in y_{0}, y_{1} (and depends on y_{0}, y_{1}) and $F(v)$ a non-negative polynomial in v.

Then the power series solution $M(z, v)=\sum M_{n, k} z^{n} v^{k}$ of the functional equation

$$
M(z, v)=F(v)+z Q\left(M(z, v), \frac{M(z, v)-M(z, 0)}{v}, z, v\right)
$$

satisfies (for some constants $c, \gamma>0$)

$$
M_{n}=\sum_{k} M_{n, k}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-5 / 2} \gamma^{n} . \quad n \equiv n_{0} \bmod d
$$

and $M_{n}=0$ for $n \not \equiv n_{0}$ mod d, where $d \geq 1$ is the period of the equation.

Universal Asymptotics for Catalytic Equations

Algebraic function [Bousquet-Melou+Jehanne]

For all polynomials $Q\left(y_{0}, y_{1}, z, v\right)$ and $F(u)$ there exists a unique power series solution $M(z, v)$ of the equation

$$
M(z, v)=F(v)+z Q\left(M(z, v), \frac{M(z, v)-M(z, 0)}{v}, z, v\right)
$$

and the function $M(z, v)$ is algebraic.

Universal Asymptotics for Catalytic Equations

Planar Maps

$$
M(z, u)=1+z u^{2} M(z, u)^{2}+u z \frac{u M(z, u)-M(z, 1)}{u-1}
$$

With $u=v+1$ and $\tilde{M}(z, v)=M(z, v+1)$ we get

$$
\tilde{M}(z, v)=1+z(v+1)\left((v+1) \tilde{M}(z, v)^{2}+\tilde{M}(z, v)+\frac{\tilde{M}(z, v)-\tilde{M}(z, 0)}{v}\right)
$$

$$
F(v)=1, \quad Q\left(y_{0}, y_{1}, z, v\right)=y_{0}^{2}(v+1)^{2}+y_{0}(v+1)+y_{1}(v+1)
$$

Universal Asymptotics for Catalytic Equations

Bipartite Planar Maps (or Eulerian planar maps by duality)

$$
E(z, u)=1+z u^{2} E(z, u)^{2}+u^{2} z \frac{E(z, u)-E(z, 1)}{u^{2}-1}
$$

With $u^{2}=v+1$ and $\tilde{E}(z, v)=E(z, \sqrt{1+v})$ we get

$$
\tilde{E}(z, v)=1+z(v+1) \tilde{E}(z, v)^{2}+(v+1) z \frac{\tilde{E}(z, v)-\tilde{E}(z, 0)}{v}
$$

$$
F(v)=1, \quad Q\left(y_{0}, y_{1}, z, v\right)=y_{0}^{2}(v+1)+y_{1}(v+1)
$$

Universal Asymptotics for Catalytic Equations

2-Connected Planar Maps

$$
B(z, u)=z^{2} u+z u B(z, u)+u(z+B(z, u)) \frac{B(z, u)-B(z, 1)}{u-1}
$$

With $u=v+1$ and $\tilde{B}(z, v)=B(z, v+1)$ we get

$$
\widetilde{B}(z, v)=z^{2}(v+1)+z(v+1) \widetilde{B}(z, v)+(v+1)(z+\widetilde{B}(z, v)) \frac{\widetilde{B}(z, v)-\widetilde{B}(z, 0)}{v}
$$

This is not precisely of the above type but it also works.

Universal Asymptotics for Catalytic Equations

Planar Triangulations

$T(z, u)=(1-u T(z, u))+(z+u) T(z, u)^{2}+z(1-u T(z, u)) \frac{T(z, u)-T(z, 0)}{u}$.

With $u=v$ and $\tilde{T}(z, v)=T(z, u) /(1-u T(z, u))$ we get

$$
\widetilde{T}(z, v)=1+v \tilde{T}(z, v)+z(1+\widetilde{T}(z, v)) \frac{\tilde{T}(z, v)-\tilde{T}(z, 0)}{v}
$$

This is (again) not precisely of the above type but it also works.

Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Let $P\left(x_{0}, x_{1}, z, v\right)$ be an analytic function such that $(y(z)=M(z, 0))$

$$
P(M(z, v), y(z), z, v)=0
$$

By taking the derivative with respect to v we get

$$
P_{x_{0}}(M(z, v), y(z), z, v) M_{v}(z, v)+P_{v}(M(z, v), y(z), z, v)=0 .
$$

Key obervation:

$$
\exists v(z): P_{v}(M(z, v(z)), y(z), z, v(z))=0 \Longrightarrow P_{x_{0}}(M(z, v(z)), y(z), z, v(z))=0
$$

Thus, with $f(z)=M(z, v(z))$ we get the system for $f(z), y(z), u(z)$

$$
\begin{aligned}
P(f(z), y(z), z, v(z)) & =0 \\
P_{x_{0}}(f(z), y(z), z, v(z)) & =0 \\
P_{v}(f(z), y(z), z, v(z)) & =0
\end{aligned}
$$

Remark: For the quadratic case this just reduces to the quadratic method.

Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach

Set (as given in our case)

$$
P\left(x_{0}, x_{1}, z, v\right)=F(v)+z Q\left(x_{0},\left(x_{0}-x_{1}\right) / v, z, v\right)-x_{0}
$$

Then the system $P=0, P_{x_{0}}=0, P_{v}=0$ rewrites to

$$
\begin{aligned}
f(z) & =F(v(z))+z Q(f(z), w(z), z, v(z)) \\
v(z) & =z v(z) Q_{y_{0}}(f(z), w(z), z, v(z))+z Q_{y_{1}}(f(z), w(z), z, v(z)) \\
w(z) & =F_{v}(v(z))+z Q_{v}(f(z), w(z), z, v(z))+z w(z) Q_{y_{0}}(f(z), w(z), z, v(z)),
\end{aligned}
$$

where

$$
w(z)=\frac{f(z)-y(z)}{v(z)}
$$

This is a positive strongly connected polynomial system.

Two Ways of Seeing the Quadratic Method

Bousquet-Melou+Jehanne - Approach
Thus, by the Folklore Theorem for Systems the solution functions $f(z), v(z), w(z)$ have a squareroot singularity at some common singularity z_{0} :

$$
\begin{aligned}
& f(z)=g_{1}(z)-h_{1}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& v(z)=g_{2}(z)-h_{2}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& w(z)=g_{3}(z)-h_{3}(z) \sqrt{1-\frac{z}{z_{0}}}
\end{aligned}
$$

$\Longrightarrow y(z)=f(z)-v(z) w(z)$ has also a squareroot singularity at z_{0}
$y(z)=g_{4}(z)-h_{4}(z) \sqrt{1-\frac{z}{z_{0}}}=a_{0}+a_{1} \sqrt{1-\frac{z}{z_{0}}}+a_{2}\left(1-\frac{z}{z_{0}}\right)+a_{3}\left(1-\frac{z}{z_{0}}\right)^{3 / 2}+$.
but maybe there are cancellations of coefficients a_{j} (and actually this happens!!!).

Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

We have $P=P_{y_{0}}=0$ for $y_{0}=f\left(z_{0}\right), y_{1}=y\left(z_{0}\right), z=z_{0}, v=v\left(z_{0}\right)$. Hence the Weierstrass Preparation Theorem implies that P can be represented by

$$
P\left(y_{0}, y_{1}, z, v\right)=K\left(y_{0}, y_{1}, z, v\right)\left(\left(y_{0}-G\left(y_{1}, z, v\right)\right)^{2}-H\left(y_{1}, z, v\right)\right)
$$

with analytic function K, G, H with $K \neq 0$.

The relations $P=0, P_{x_{0}}=0, P_{v}=0$ imply

$$
H(y(z), z, v(z))=0, \quad H_{v}(y(z), z, v(z))=0
$$

Furthermore for the critical point $y_{1}=y\left(z_{0}\right), z=z_{0}, v=v\left(z_{0}\right)$ we also have

$$
H_{v v}\left(y\left(z_{0}\right), z_{0}, v\left(z_{0}\right)=0\right.
$$

Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach

Lemma. Suppose that y_{0}, z_{0}, v_{0} are complex numbers and that $H(z, v, y)$ is a function that is analytic at (y_{0}, z_{0}, v_{0}) and satisfies the properties

$$
H\left(y_{0}, z_{0}, v_{0}\right)=0, \quad H_{u}\left(y_{0}, z_{0}, v_{0}\right)=0, \quad H_{u u}\left(y_{0}, z_{0}, v_{0}\right)=0
$$

and $\left(\right.$ for $\left.(y, z, v)=\left(y_{0}, z_{0}, v_{0}\right)\right)$:

$$
H_{y} \neq 0, \quad H_{v y} \neq 0, \quad H_{v v v} \neq 0, \quad H_{z} H_{v y} \neq H_{y} H_{v z}
$$

Then the system of functional equations

$$
H(y(z), z, v(z))=0, \quad H_{u}(y(z), z, v(z))=0
$$

has precisely two solutions $v(z)$ and $y(z)$ with $v\left(z_{0}\right)=v_{0}$ and $y\left(z_{0}\right)=y_{0}$ which are given by

$$
\begin{aligned}
& \left.v(z)=\bar{g}_{1}(z) \pm \bar{h}_{(} z\right) \sqrt{1-\frac{z}{z_{0}}} \\
& y(z)=\bar{g}_{2}(z) \pm \bar{h}_{2}(z)\left(1-\frac{z}{z_{0}}\right)^{3 / 2}
\end{aligned}
$$

in a neighbourhood of z_{0}.

Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps

1. $H_{v}(z, v, y)=0 \quad \Longrightarrow \quad y=Y(z, v)$
2. $H(z, v, Y(z, v))=0 \quad \Longrightarrow \quad v=v(z)$
3. $y(z)=Y(z, v(z))$

The Analytic Quadratic Method

ad 1. $H_{v}(z, v, Y(z, v))=0$

Implicit function theorem $\Longrightarrow Y(z, v)$ analytic at $\left(z_{0}, v_{0}\right)$ but

$$
Y_{v}\left(z_{0}, v_{0}\right)=-\frac{H_{v v}}{H_{v y}}=0
$$

ad 2. $H(z, v, Y(z, v))=0, v=v(z)$
Folklore Theorem $\Longrightarrow v(z)=g_{1}(z) \pm g_{2}(z) \sqrt{1-\frac{z}{z_{0}}}$

Two Ways of Seeing the Quadratic Method

Weierstrass Preparation Theorem - Approach: Proof steps

```
ad 3. y(z)=Y(z,v(z))
```

$$
Y_{v}\left(z_{0}, v_{0}\right)=0 \Longrightarrow
$$

$$
\begin{aligned}
y(z) & =Y(z, v(z)) \\
& =y_{0}+Y_{z}\left(z_{0}, v_{0}\right)\left(z-z_{0}\right)+\frac{1}{2} Y_{v v}\left(z_{0}, v_{0}\right)\left(v(z)-v_{0}\right)^{2} \\
& +Y_{v z}\left(z_{0}, v_{0}\right)\left(z-z_{0}\right)\left(v(z)-v_{0}\right)+\frac{1}{6} Y_{v v v}\left(z_{0}, v_{0}\right)\left(v(z)-u_{0}\right)^{3} \\
& +O\left(\left(z-z_{0}\right)^{2}\right) \\
& =h_{1}(z) \pm h_{2}(z)\left(1-\frac{z}{z_{0}}\right)^{3 / 2}
\end{aligned}
$$

Two Ways of Seeing the Quadratic Method

Summing up

1. $y(z)=M(z, 0)$ has a squareroot singularity at z_{0} with possible cancellations of coefficients of the singular expansions.
2. $y(z)=\bar{g}_{2}(z) \pm \bar{h}_{2}(z)\left(1-\frac{z}{z_{0}}\right)^{3 / 2}$
3. It is possible to check that $\bar{h}_{2}\left(z_{0}\right) \neq 0$.
4. Thus the dominant singularity of $y(z)$ is of the form $\left(1-z / z_{0}\right)^{3 / 2}$ which leads to the (universal) behavior of $M_{n}=\left[z^{n}\right] M(z, 0) \sim$ $c n^{-5 / 2} z_{0}^{-n}$.

Extensions

- Systems of (Catalytic) Equations
- Additional counting parameters which lead to central limit theorems (via Hwang's Quasi-Power-Theorem)

Thank You!

