Properties for extreme-valued degrees in recursive trees

Laura Eslava

joint work with Louigi Addario-Berry

McGill University/Georgia Tech

AofA 2017

Motivation: Hubs in random networks

Tree growth processes

Notation for trees: T

- ▶ Root / Leaves
- ▷ Children / Degree $\deg_{\mathcal{T}}(\cdot)$
- ▷ Depth $ht_{\tau}(\cdot)$ / Height
- ▶ Edges directed towards root.
- ▷ Vertices are labeled with $[n] = \{1, ..., n\}.$

 $ht_{T}(2) = 1$

 \triangleright T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

$$\triangleright$$
 T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

$$\triangleright$$
 T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

$$\triangleright$$
 T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

 \triangleright T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

$$\triangleright$$
 T_1 is a single-vertex tree.

$$\triangleright \text{ For } n > 1, \text{ build } T_n \text{ from } T_{n-1}$$

adding:
$$\begin{cases} \text{vertex } n \\ \text{edge } n \to j \end{cases}$$

$$\mathbb{P}(n \to j) = \frac{\beta \deg_{T_{n-1}}(j) + 1}{(\beta + 1)(n-2) + 1}$$

When $\beta > 0$: *The rich gets richer*.

$\alpha = \mathbf{0}$

Recursive Trees (Uniform attach.)

$$\mathbb{P}(n \to j) = \frac{1}{n-1}$$

Choices are independent from the past

$\alpha = \mathbf{0}$

300 vertices

 $\alpha = 1$

Recursive Trees (Uniform attach.) Linear Pref. Attachment

$$\mathbb{P}(n\to j)=\frac{1}{n-1}$$

$$\mathbb{P}(n \to j) = \frac{\deg_{T_{n-1}}(j) + 1}{2n - 3}$$

Choices are independent from the past

The rich gets richer

Asymptotic normality $(n \rightarrow \infty)$

Degree distribution [Janson 05]:

 $Z_d(n) =$ #Vertices with degree *d* in $T_n \sim N(c_d n, \sigma_d^2 n)$

Insertion depth [Devroye 88, Mahmoud 91-92]:

 $\operatorname{ht}_{T_n}(n) \sim N(c \ln n, c \ln n)$

$$\alpha = \mathbf{0} \to \begin{cases} \frac{1}{c_d} &= 2^{d+1} \\ c &= 1 \end{cases} \qquad \alpha = 1 \to \begin{cases} \frac{1}{c_d} &= (d+1)(d+2)(d+3) \\ c &= \frac{1}{2} \end{cases}$$

Maximum degree Δ_n [Devroye, Lu 95, Mori 05]:

$$\alpha = 0: \qquad \lim_{n \to \infty} \quad \frac{\Delta_n}{\log n} = 1 \qquad a.s. \qquad \longleftarrow \log n \approx 1.4 \ln n$$

$$\alpha = 1: \qquad \lim_{n \to \infty} \quad \frac{\Delta_n}{\sqrt{n}} = D \qquad a.s. \qquad \longleftarrow \text{ Continuous dist.}$$

Maximum degree Δ_n [Devroye, Lu 95, Mori 05]:

$$\alpha = 0: \qquad \lim_{n \to \infty} \quad \frac{\Delta_n}{\log n} = 1 \qquad a.s. \qquad \longleftarrow \log n \approx 1.4 \ln n$$
$$\alpha = 1: \qquad \lim_{n \to \infty} \quad \frac{\Delta_n}{\sqrt{n}} = D \qquad a.s. \qquad \longleftarrow \text{ Continuous dist.}$$

[Goh, Schmutz 2002] If T_n is a recursive tree, $n = 2^k$. For $i \in \mathbb{N}$ fixed $\mathbb{P}(\Delta_n - \log n < i) = \exp\{-2^{-i}\} + o(1).$

More details for Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016]

Let $E_i \stackrel{\mathcal{L}}{=} \operatorname{Exp}(1)$ be iid. If T_n is a linear perf. attachment tree. As $n \to \infty$, $\begin{pmatrix} \deg_{T_n}(i) & i > 1 \end{pmatrix} \stackrel{\mathcal{L}}{\to} (B, i > 1)$

$$\left(\frac{\operatorname{deg}_{I_n}(f)}{\sqrt{n}}, i \geq 1\right) \xrightarrow{\mathcal{L}} (B_i, i \geq 1),$$

where for all $k \ge 2$,

$$\sum_{i=1}^{k} B_i \stackrel{\mathcal{L}}{=} \left(\sum_{i=1}^{k} E_i\right)^{1/2}$$

More details for Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016]

Let $E_i \stackrel{\mathcal{L}}{=} \operatorname{Exp}(1)$ be iid. If T_n is a linear perf. attachment tree. As $n \to \infty$, $\begin{pmatrix} \deg_{T_n}(i) & i > 1 \end{pmatrix} \stackrel{\mathcal{L}}{\to} (P_i, i > 1)$

$$\left(\frac{\deg \mathcal{F}_n(\mathcal{F})}{\sqrt{n}}, i \geq 1\right) \xrightarrow{\mathcal{L}} (\mathcal{B}_i, i \geq 1),$$

where for all $k \ge 2$,

$$\sum_{i=1}^{k} B_i \stackrel{\mathcal{L}}{=} \left(\sum_{i=1}^{k} E_i\right)^{1/2}$$

What is the proportion for each B_j ?

Stick-breaking process

Each piece is broken independently

Extreme-valued degrees in recursive trees

Through Kingman's Coalescent

For a uniformly chosen vertex v, let $B_i \stackrel{\mathcal{L}}{=} Ber(2/i)$ be independent,

$$\mathcal{S} \stackrel{\mathcal{L}}{=} \sum_{i=2}^{n} B_{i},$$

and draw $\ensuremath{\mathcal{S}}$ independent fair coin flips.

Proposition.

Depth = Total # unfavourable flips.

 $\operatorname{ht}_{F_n}(v) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1/2).$

Degree = First streak fav. flips.

$$\deg_{F_n}(v) \stackrel{\mathcal{L}}{=} \min\{Geo(1/2), |\mathcal{S}|\}.$$

Summary of results

Poisson Point Process for near-maximum degree vertices Number and their depth

Conditional depth of high-degree vertices

▷ Tighten tails for maximum degree distribution (~Gumbel)

▷ CLT's -rates of converge $(1 < c < \log e)$

 $X_c = \{v \in [n], \deg_{T_n}(v) \ge c \ln n\}$

Summary of results

Poisson Point Process for near-maximum degree vertices Number and their depth

Conditional depth of high-degree vertices

- ▷ Tighten tails for maximum degree distribution (~Gumbel)
- ▷ CLT's -rates of converge $(1 < c < \log e)$

 $X_c = \{v \in [n], \deg_{T_n}(v) \ge c \ln n\}$

- High degrees of random recursive trees (joint with Louigi Addario-Berry). RSA 2017^+
- Depth of vertices with high degree in random recursive trees.
- Extremal values in recursive trees via a new tree growth process.

The marked point process

- Natural
 - # vertices with same excess degree k is $Poisson(2^{-k-1})$
 - Depths have Gaussian fluctuations
- ▷ Good news
 - '# vertices'/depths become independent variables
- ▷ Surprising
 - Process of vertex-overtakes to become max-degree

Comparing...

Recursive Trees [Addario-Berry, E. 17, E. 17⁺]

"Maximum-degree vertices are in a constant race"

•
$$\leftarrow \left(\deg(v) - \log n, \frac{\operatorname{ht}(v) - (1-a) \ln n}{\sqrt{(1-a/2) \ln n}} \right)$$

There are $\approx n^a$ vertices with depth $\approx (1 - a) \ln n$

Linear Pref. Attachment [Mori 05, Pekös, Röllin,Ross 16] "Maximum degree vertices are immediately established"

$$\lim_{n\to\infty}\left(\frac{\deg_{T_n}(1)}{\sqrt{n}},\frac{\deg_{T_n}(2)}{\sqrt{n}},\frac{\deg_{T_n}(3)}{\sqrt{n}},\ldots\right)=(B_1,B_2,B_3,\ldots)$$

Thanks!

Image from scalefreenetworks, Flickr