Properties for extreme-valued degrees in recursive

 treesLaura Eslava
joint work with Louigi Addario-Berry
McGill University/Georgia Tech

$$
\text { AofA } 2017
$$

Motivation: Hubs in random networks

Tree growth processes
Image by Louigi A.-B

Notation for trees: T

\triangleright Root / Leaves
\triangleright Children / Degree $\operatorname{deg}_{T}(\cdot)$
\triangleright Depth ht ${ }_{T}(\cdot) /$ Height
\triangleright Edges directed towards root.
\triangleright Vertices are labeled with $[n]=\{1, \ldots, n\}$.

$$
\begin{aligned}
\operatorname{deg}_{T}(2) & =2 \\
\operatorname{ht}_{T}(2) & =1
\end{aligned}
$$

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$
$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$$
\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}
$$

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$

$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}$
When $\beta>0$: The rich gets richer.

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$

$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$
$\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}$

When $\beta>0$: The rich gets richer.

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$
$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}$
When $\beta>0$: The rich gets richer.

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$
$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}$
When $\beta>0$: The rich gets richer.

Tree growth processes, $\left(T_{n}, n \in \mathbb{N}\right)$
$\triangleright T_{1}$ is a single-vertex tree.
\triangleright For $n>1$, build T_{n} from T_{n-1}
adding: $\left\{\begin{array}{l}\text { vertex } n \\ \text { edge } n \rightarrow j\end{array}\right.$

$\mathbb{P}(n \rightarrow j)=\frac{\beta \operatorname{deg}_{T_{n-1}}(j)+1}{(\beta+1)(n-2)+1}$
When $\beta>0$: The rich gets richer.

$\alpha=0 \quad 300$ vertices

Recursive Trees (Uniform attach.)

$$
\mathbb{P}(n \rightarrow j)=\frac{1}{n-1}
$$

\triangleright Choices are independent from the past

$\alpha=0$
300 vertices
$\alpha=1$

Recursive Trees (Uniform attach.)

$$
\mathbb{P}(n \rightarrow j)=\frac{1}{n-1}
$$

\triangleright Choices are independent from the past

Linear Pref. Attachment

$$
\mathbb{P}(n \rightarrow j)=\frac{\operatorname{deg}_{T_{n-1}}(j)+1}{2 n-3}
$$

Asymptotic normality $(n \rightarrow \infty)$

Degree distribution [Janson 05]:

$$
Z_{d}(n)=\# \text { Vertices with degree } d \text { in } T_{n} \sim N\left(c_{d} n, \sigma_{d}^{2} n\right)
$$

Insertion depth [Devroye 88, Mahmoud 91-92]:

$$
\operatorname{ht}_{T_{n}}(n) \sim N(c \ln n, c \ln n)
$$

$\alpha=0 \rightarrow\left\{\begin{array}{ll}\frac{1}{c_{d}}=2^{d+1} \\ c & =1\end{array} \quad \alpha=1 \rightarrow \begin{cases}\frac{1}{c_{d}} & =(d+1)(d+2)(d+3) \\ c & =\frac{1}{2}\end{cases}\right.$

Maximum degree

Maximum degree Δ_{n} [Devroye, Lu 95, Mori 05]:

$$
\begin{array}{llll}
\alpha=0: & \lim _{n \rightarrow \infty} \frac{\Delta_{n}}{\log n}=1 & \text { a.s. } & \longleftarrow \log n \approx 1.4 \ln n \\
\alpha=1: & \lim _{n \rightarrow \infty} \frac{\Delta_{n}}{\sqrt{n}}=D & \text { a.s. } & \longleftarrow \text { Continuous dist. }
\end{array}
$$

Maximum degree

Maximum degree Δ_{n} [Devroye, Lu 95, Mori 05]:

$$
\begin{array}{llll}
\alpha=0: & \lim _{n \rightarrow \infty} & \frac{\Delta_{n}}{\log n}=1 & \text { a.s. }
\end{array} \longleftarrow \log n \approx 1.4 \ln n
$$

[Goh, Schmutz 2002] If T_{n} is a recursive tree, $n=2^{k}$. For $i \in \mathbb{N}$ fixed

$$
\mathbb{P}\left(\Delta_{n}-\log n<i\right)=\exp \left\{-2^{-i}\right\}+o(1) .
$$

More details for Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016]
Let $E_{i} \stackrel{\mathcal{L}}{=} \operatorname{Exp}(1)$ be iid. If T_{n} is a linear perf. attachment tree. As $n \rightarrow \infty$,

$$
\left(\frac{\operatorname{deg}_{T_{n}}(i)}{\sqrt{n}}, i \geq 1\right) \xrightarrow{\mathcal{L}}\left(B_{i}, i \geq 1\right)
$$

where for all $k \geq 2$,

$$
\sum_{i=1}^{k} B_{i} \stackrel{\mathcal{L}}{=}\left(\sum_{i=1}^{k} E_{i}\right)^{1 / 2}
$$

More details for Linear Pref. Attachement

[Mori2005, Pekös, Röllin, Ross 2016]
Let $E_{i} \xlongequal{\mathcal{L}} \operatorname{Exp}(1)$ be iid. If T_{n} is a linear perf. attachment tree. As $n \rightarrow \infty$,

$$
\left(\frac{\operatorname{deg}_{T_{n}}(i)}{\sqrt{n}}, i \geq 1\right) \xrightarrow{\mathcal{L}}\left(B_{i}, i \geq 1\right),
$$

where for all $k \geq 2$,

$$
\sum_{i=1}^{k} B_{i} \stackrel{\mathcal{L}}{=}\left(\sum_{i=1}^{k} E_{i}\right)^{1 / 2}
$$

What is the proportion for each B_{j} ?

Stick-breaking process

$$
\sum_{i=1}^{k} B_{i} \stackrel{\mathcal{L}}{=}(\operatorname{Exp}(k))^{1 / 2}
$$

$$
\begin{gathered}
\frac{B_{2}}{B_{1}+B_{2}} \stackrel{\mathcal{L}}{=} \operatorname{Beta}(2,2) \\
\frac{B_{j}}{B_{1}+\cdots B_{j}} \stackrel{\mathcal{L}}{=} \operatorname{Beta}(2,3 j-4)
\end{gathered}
$$

\triangleright Each piece is broken independently

Extreme-valued degrees in recursive trees

Through Kingman's Coalescent

For a uniformly chosen vertex v, let $B_{i} \stackrel{\mathcal{L}}{\mathscr{}} \operatorname{Ber}(2 / i)$ be independent,

$$
\mathcal{S} \stackrel{\mathcal{L}}{=} \sum_{i=2}^{n} B_{i}
$$

and draw \mathcal{S} independent fair coin flips.

Proposition.

Depth $=$ Total \# unfavourable flips.

$$
\operatorname{ht}_{F_{n}}(v) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1 / 2)
$$

Degree $=$ First streak fav. flips.

$$
\operatorname{deg}_{F_{n}}(v) \stackrel{\mathcal{L}}{=} \min \{G e o(1 / 2),|\mathcal{S}|\}
$$

Summary of results

\triangleright Poisson Point Process for near-maximum degree vertices

Number and their depth

\triangleright Conditional depth of high-degree vertices
\triangleright Tighten tails for maximum degree distribution (\sim Gumbel)
\triangleright CLT's -rates of converge $(1<c<\log e)$

$$
X_{c}=\left\{v \in[n], \operatorname{deg}_{T_{n}}(v) \geq c \ln n\right\}
$$

Summary of results

\triangleright Poisson Point Process for near-maximum degree vertices

Number and their depth

\triangleright Conditional depth of high-degree vertices
\triangleright Tighten tails for maximum degree distribution (\sim Gumbel)
\triangleright CLT's -rates of converge $(1<c<\log e)$

$$
X_{c}=\left\{v \in[n], \operatorname{deg}_{T_{n}}(v) \geq c \ln n\right\}
$$

- High degrees of random recursive trees (joint with Louigi Addario-Berry). RSA $2017{ }^{+}$
- Depth of vertices with high degree in random recursive trees.
- Extremal values in recursive trees via a new tree growth process.

The marked point process

\triangleright Natural

- \# vertices with same excess degree k is Poisson $\left(2^{-k-1}\right)$
- Depths have Gaussian fluctuations
\triangleright Good news
- '\# vertices'/depths become independent variables
\triangleright Surprising
- Process of vertex-overtakes to become max-degree

Comparing...

Recursive Trees [Addario-Berry,E. 17, E. 17^{+}]
"Maximum-degree vertices are in a constant race"

$$
\bullet \quad \leftarrow\left(\operatorname{deg}(v)-\log n, \frac{h t(v)-(1-a) \ln n}{\sqrt{(1-a / 2) \ln n}}\right)
$$

There are $\approx n^{a}$ vertices with depth $\approx(1-a) \ln n$

Linear Pref. Attachment [Mori 05, Pekös, Röllin,Ross 16]
"Maximum degree vertices are immediately established"

$$
\lim _{n \rightarrow \infty}\left(\frac{\operatorname{deg}_{T_{n}}(1)}{\sqrt{n}}, \frac{\operatorname{deg}_{T_{n}}(2)}{\sqrt{n}}, \frac{\operatorname{deg}_{T_{n}}(3)}{\sqrt{n}}, \ldots\right)=\left(B_{1}, B_{2}, B_{3}, \ldots\right)
$$

Thanks!

Image from scalefreenetworks, Flickr

