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QuickSort: The Algorithm (Hoare, early 1960s)

Assume distinct keys (numbers—or perhaps symbol
strings—to be sorted).
Choose “pivot” key uniformly at random.
Use pivot to partition into two subsets: smaller and larger.
Apply QuickSort recursively to subsets. Measure runtime by

Kn := number of key comparisons, with K0 = 0
L
= KUn−1 + K ∗n−Un

+ n − 1, n ≥ 1,

where on the RHS:
Un ∼ unif{1, . . . , n}

and
Un; K0, . . . ,Kn−1; K ∗0 , . . . ,K

∗
n−1

are all independent.
Applied focus: the law L(Kn) and asymptotics as n→∞
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The importance of QuickSort

In a special issue of Computing in Science & Engineering
(2000), guest editors Jack Dongarra and Francis Sullivan chose
QuickSort as one of the ten algorithms “with the greatest
influence on the development and practice of science and
engineering in the 20th century.”
QuickSort is the standard sorting procedure in Unix systems.
QuickSort is among “some of the most basic algorithms—the
ones that deserve deep investigation.”— Ph. Flajolet (1999)
“probably most widely used sorting algorithm” —
U. Rösler (1991)
“one of the fastest, the best-known, the most generalized, the
most completely analyzed, and the most widely used
algorithms for sorting” — W. F. Eddy and M. J.
Schervish (1995) (But much more analysis has followed!)
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1: Basics of QuickSort analysis

Conditioning on the pivot index Un and using the law of total
expectation, the distributional recurrence

Kn
L
=KUn−1 + K ∗n−Un

+ n − 1, n ≥ 1

implies a simple divide and conquer recurrence relation for expected
values with explicit solution

κn := EKn = 2(n + 1)Hn − 4n, n ≥ 0.

We have
κn ∼ 2n ln n.

The law of total variance gives another recurrence relation, with
solution

VarKn = 7n2 − 4(n + 1)2H
(2)
n − 2(n + 1)Hn + 13n

∼ (7− 2
3π

2)n2 =: σ2n2

[e.g., Exercise 6.2.2-8 in D. E. Knuth (1973, vol. 3)].

• Higher-order cumulants: Pascal Hennequin (1991 PhD diss.)
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2: Convergence in distribution: heuristic derivation

Is there convergence in distribution? YES!:

Yn
L→ Y

L
=UY + (1− U)Y ∗ + 2U lnU + 2(1− U) ln(1− U) + 1

with
EY = 0 and VarY = σ2 = 7− 2

3π
2 <∞.

This is TRUE!, and at least three methods of proof are possible:

Method 1: Yn
L→Y by method of moments [Hennequin (1991)]

Method 2: Yn → Y a.s. and in Lp ∀ 0 < p <∞ by martingale
arguments [M. Régnier (1989)]

Method 3: Yn → Y in Mallows dp ∀p = 1, 2, . . . by contraction
method [Rösler (1991)]

OPEN PROBLEM 6.2 in F and Janson (2002):
Is there a local limit theorem for distns.?

YES!: this talk, based on Bollobás, F, and Riordan (2017)
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3: Selected contributions to analysis of QS (2002-)

The following contributions are highlighted because they are
relevant to establishment of a LLT!

K. H. Tan and P. Hadjicostas (1995) — limit distribution is
absolutely continuous; density is positive a.e.
F and S. Janson (Mathematics and Computer Science:
Algorithms, Trees, Combinatorics, and Probabilities, 2000) —
smoothness and decay properties of the limiting density and its
derivatives; in particular (Theorems 3.1 and 3.3 and
Corollary 4.2 there), there is an infinitely smooth (analytic?)
everywhere positive limiting density f satisfying

max
x

f (x) < 16 and max
x

f ′(x) < 2466
(with the true bounds probably closer to 1 and 2, resp.).

Aside: These bounds were one ingredient used by L. Devroye,
F, and R. Neininger (2000) to devise an algorithm for perfect
simulation from the limiting distribution F for QuickSort.
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Plot of the (smooth) density function f for F
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Thinness of the tails of F (rigorous)
Invariably, someone asks: How thin are the tails of F?
A rigorously established answer, sharp to lead order in
log-probability, was provided by S. Janson (Electron. J.
Probab., 2015), improving significantly on results of F and
S. Janson (RSA, 2000).
Let Y ∼ F . The left tail is doubly-exponentially thin, and the
right tail is Poisson(1)-thin:

Theorem (Janson, 2015)

(a) Let γ :=
(
2− 1

ln 2

)−1. As x →∞ we have

exp
[
−eγx+ln ln x+O(1)

]
≤ P(Y ≤ −x) ≤ exp

[
−eγx+O(1)

]
.

(b) As x →∞ we have

exp [−x ln x − x ln ln x + O(x)] ≤ P(Y ≥ x) ≤ exp [−x ln x + O(x)] .

Jim Fill A Local Limit Theorem for QuickSort Key Comparisons



Thinness of the tails of F (non-rigorous)

Using the non-rigorous WKB method, C. Knessl and
W. Szpankowski (Discrete Math. Theor. Comput. Sci., 1999)
found very sharp log-asymptotics for both tails:

(a) As x →∞, for some constant c we have

P(Y ≤ −x) = exp
[
−eγx+c+o(1)

]
.

(b) As x →∞ we have

P(Y ≥ x) = exp [−x ln x − x ln ln x + (1 + ln 2)x + o(x)] .

OPEN PROBLEMS: Prove that f is unimodal. Is f in fact
strongly unimodal? What can one say about changes of signs of
the derivatives of f ? Is F infinitely divisible?
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3: Selected contributions to analysis of QS (2002-)

Let Fn denote the distribution function of Yn = (Kn − κn)/n. The
following two results about convergence of Fn to its limit F are
from F and S. Janson (J. of Algorithms, 2002), and the upper
bounds are proved by first treating dp-distances inductively using
the contraction method á la Rösler’s (1991) proof of convergence
and then relating Kolmogorov–Smirnov distance to dp-distances:

We have Fn → F at rate O
(
n−(

1
2−ε)

)
in the K-S distance (for

every ε > 0); but our lower bound is only Ω(n−1)
(and improving either bound in this global theorem remains
an open problem).
There is a constant C such that, for any x and any n ≥ 1,∣∣∣∣∣Fn(x + δn

2 )− Fn(x − δn
2 )

δn
− f (x)

∣∣∣∣∣ ≤ Cn−1/6,

where δn = 2Cn−1/6 (w/ no claim of sharpness in the bound).
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4: From a semi-local LT to a local LT

Recall that Fn denotes the distribution function of

Yn = (Kn − κn)/n

and that we have the following semi-local limit theorem:
There is a constant C such that for any x and any n ≥ 1 we
have ∣∣∣∣∣Fn(x + δn

2 )− Fn(x − δn
2 )

δn
− f (x)

∣∣∣∣∣ ≤ Cn−1/6,

where δn = 2Cn−1/6.
Our new result is that δn can be decreased to n−1, with the error
bound increasing from O(n−1/6) to a little more than O(n−1/18).
Expressed in terms of the distribution of the unnormalized
comparisons-count Kn, the result is as follows (again with no claim
of sharpness in the bound).
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Main theorem: A LLT for QuickSort

The following local limit theorem is our main result and gives a
positive answer to Open Problem 6.2 in F and S. Janson (J. of
Algorithms, 2002):

Theorem (Local Limit Theorem for QuickSort)

Let Kn denote the (random) number of key comparisons required
by QuickSort to sort a file of n distinct keys, let κn = EKn, and let
f denote the continuous density of the limiting distribution for the
normalized random variable Yn = (Kn − κn)/n. Then there is a
constant C such that for any integer k and any n ≥ 1 we have∣∣P(Kn = k)− n−1f ((k − κn)/n)

∣∣ ≤ n−1 × Cn−1/18 log n.

We obtain the LLT from the semi-LLT by multiple rounds of a
smoothing argument. The proof is too complex for a 20-minute
talk, but I will give some ideas.
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5: Obtaining the LLT from the semi-LLT: main ideas

We obtain the LLT from the semi-LLT by multiple rounds of a
smoothing argument. The basic idea of strengthening a
distributional (often normal) limit theorem to a local one by
smoothing is by now quite old, but we find it necessary (and
sufficient) to do this smoothing in multiple rounds. [Multi-round
smoothing has recently been used independently by Diaconis and
Hough (2015) in a different context.]

We know that there is global (and, indeed, semi-local)
convergence to a well-behaved distribution. (GLT)
To deduce a LLT from the GLT it would suffice to show that
“nearby” values for Kn have probabilities that are close,
namely: If kn, k ′n = κn + O(n) and |kn − k ′n| = o(n), then

P(Kn = kn) = P(Kn = k ′n) + o(n−1). (1)

For this, in turn, we might (as in D. R. McDonald (1979)) try
to find a “smooth part” within the distribution of Kn. More
precisely, . . .
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Obtaining the LLT from the semi-LLT: main ideas
We might try to find a “smooth part” within the distribution of
Kn. More precisely, we might try to write

Kn = An + Bn

where, for some σ-field Fn, we have that An is Fn-measurable
and the conditional distribution of Bn given Fn (wvhp) obeys
a "closeness” relation corresponding to (1).
Then it follows easily (by first considering conditional
probabilities given Fn) that (1) holds.
One idea is to choose Fn so that Bn has a very well
understood conditional distribution, such as binomial.
In some contexts, this approach works directly. Here it does
not. We can get such a decomp. with (conditionally)
Bn ∼ Bin(Θ(n), 2/3). But then the variance of Bn grows
linearly, while the variance of Kn grows quadratically. Roughly
speaking, this allows us to prove (1) when |kn − k ′n| = o(

√
n),

but we need (1) for |kn − k ′n| = o(n) [or, in light of the
semi-LLT, at least for |kn − k ′n| = O(n5/6)].
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6: The tree-exploration lemma

The key idea, then, is not to try to jump straight from the GLT (or
from the semi-LLT) to the LLT, but to proceed in stages (rounds).
Rather than outline the entire argument (which makes use of the
CLT for sums of independent random variables after suitable
exponential tilting, among many other things), I will discuss a
tree-exploration lemma (along with its proof using martingale
arguments) that lies at the heart of the argument. Let c := 1/100.

Lemma (tree-exploration lemma)

Let r ≥ 2 be even, and assume that r ≤ n/75. Then setting
s = dcn/re, we may write Kn = A + B where, for some σ-field F :

A is F-measurable, and
with probability at least 1− e−s , the conditional distribution of
B given F is the sum of s independent random variables
B1, . . . ,Bs with each Bi having the distribution Kri for some ri
with r/2 ≤ ri ≤ r .
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7: Proof of the tree-exploration lemma

The remainder of the talk is devoted to the proof of the
tree-exploration lemma. Before any claims, much preliminary
discussion:

Tn = random binary search tree for n nodes labeled 1, . . . , n.
T (v) denotes the subtree of Tn consisting of a given node v
and its descendants (the “fringe" subtree of Tn rooted at v).
We consider two counts, Xn (primary) and Yn (auxiliary):
Xn := number of nodes v such that (i) r/2 ≤ |T (v)| ≤ r and
(ii) either v is the root or |T (parent of v)| > r . Call such a
node special.
Observe: If v and w are distinct special nodes, then T (v) and
T (w) are disjoint.
We will show that, with probability at least 1− e−s , there are
at least s special nodes in Tn, i.e.: P(Xn ≥ s) ≥ 1− e−s .
Yn := number of fringe trees with at least r + 1 nodes.

Jim Fill A Local Limit Theorem for QuickSort Key Comparisons



Proof of the tree-exploration lemma (cont.): exploration

For convenience in presenting the arguments that follow, attach
(unlabeled) external nodes as necessary to each node of Tn so that
as a result each of the original nodes of Tn has two children; these
external nodes do not have labels and do not contribute to the sizes
of subtrees.

Consider the following discrete-time procedure for exploring the
original nodes of Tn in order to learn their search-tree labels.

At time 0 nothing is known.
At time 1, the label of the root is revealed, thus also revealing
the sizes of the left and right subtrees.

Now let 2 ≤ t ≤ n. . . .
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Proof of the tree-exploration lemma: exploration (cont.)

Now let 2 ≤ t ≤ n. At time t − 1, it will be true inductively that
nodes with revealed labels will have fringe subtree size at least
r + 1 and the subtree sizes of their two children will be known.

At time t, choose an unrevealed child v of a revealed node
such that |T (v)| ≥ r + 1 and reveal its label, if such a v
exists.

For definiteness, among such nodes with smallest level, choose
the leftmost one.
If there are no such nodes v , then nothing is revealed at time t
(nor at later times).
At any time t ∈ [1, n], call the unrevealed children (including
all external nodes) of revealed nodes “leaves”.

Note that each time the label of a node is revealed, two new
leaves (namely, the children of that node) are created; for later
technical reasons, we consider the left child to be created as a
leaf before the right child.
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Proof of the tree-exploration lemma (cont.): martingales

τ := Yn is the random time at which the procedure ends, i.e.,
the first time at which all of the leaves have subtree sizes ≤ r .
Ft := the σ-field corresponding to the labels that have been
revealed through time t.
Observe!: For any random variable W with finite expectation,
the stochastic process (E[W |Ft ])0≤t≤n is a (Doob’s)
martingale with values EW ,W at times t = 0, n, resp.
We will apply this observation taking W to be Xn [with
martingale (Mt)] and Yn [with martingale (Nt)].
Clearly Nτ = Yn = τ .
The respective means ξn := EXn and ηn := EYn of the
martingales (Mt) and (Nt) can be computed by solving
standard divide-and-conquer recurrence relations.
From those computations it is simple to deduce that

−2 < Nt − Nt−1 ≤ 1, −1
2 < Mt −Mt−1 < 1

for every t.
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Proof of the tree-exploration lemma (cont.): bound on τ

First claim: P(τ < 3n
r+1) ≥ 1− exp

[
− 2

27

(
n

r+1

)]
.

Proof: Recalling that τ = Nτ , we have

P
(
τ ≥ 3n

r+1

)
≤ P

(
Nt = t for some t ≥ 3n

r+1

)
.

By the generalized Azuma inequality we have

P
(
τ ≥ 3n

r+1

)
≤ P

(
Nt − ηn = t −

[
2(n+1)
r+2 − 1

]
for some t ≥ 3n

r+1

)
≤ P

(
Nt − ηn ≥ 1

3 t for some t ≥ 3n
r+1

)
≤ exp

[
− 2

81

⌈
3n
r+1

⌉]
≤ exp

[
− 2

27

(
n

r+1

)]
=: ε.
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Pf. of T-E L (cont.): whp, Xn is not too small rel. to n/r

First claim: P(τ < 3n
r+1) ≥ 1− exp

[
− 2

27

(
n

r+1

)]
.

Second claim: P
(
Xn ≥ (1/100)n

r

)
≥ 1− exp

[
−
⌈ 1

100

(
n
r

)⌉]
.

Proof: By the first claim, because t ≥ τ implies Mt = Xn, we have

P
(
Xn <

(1/2)(n+1)
r+1

)
≤ P

(
τ ≥ 3n

r+1

)
+P

(
Md3n/(r+1)e <

(1/2)(n+1)
r+1

)
.

Further, by Azuma’s inequality we have

P
(
Xn <

(1/100)n
r

)
≤ P

(
Xn <

(1/2)(n+1)
r+1

)
≤ ε+ P

(
Md3n/(r+1)e <

(1/2)(n+1)
r+1

)
= ε+ P

(
Md3n/(r+1)e − ξn < −

(1/2)(n+1)
r+1

)
≤ ε+ exp

[
−8

9

[
(1/2)(n+1)

r+1

]2/
d3n/(r + 1)e

]
≤ ε+ exp

[
− 1

18

(
n

r+1

)]
≤ exp

[
− 4

81

(
n
r

)]
+ exp

[
− 1

27

(
n
r

)]
≤ exp

[
−
⌈ 1

100

(
n
r

)⌉]
, where
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Pf. of T-E L: whp, Xn is not too small rel. to n/r (cont.)

the orange ineq. holds because d3n/(r + 1)e ≤ 4n/(r + 1),

the blue inequality holds because r + 1 ≤ (3/2)r , and

the green inequality holds because

e−4x/81 + e−x/27 ≤ e−(x/100)+1 ≤ e−dx/100e for x ≥ 75.

We have proven the second claim that the number Xn of special
nodes is at least s = d(1/100)n/re wp at least 1− e−s .

The proof of the tree-exploration lemma, and hence of the LLT,
concludes on the next slide.

Jim Fill A Local Limit Theorem for QuickSort Key Comparisons



Proof of the tree-exploration lemma (conclusion)

Let σ ≤ τ denote
the stopping time at which the exploration process has
discovered either s or (by means of having simultaneously
discovered two special-leaf children with a single reveal) s + 1
special leaves, in the event E that such a time exists;
otherwise set σ = n.

If the event E occurs, fully explore the subtrees rooted at all
leaves except the first s special leaves that have been
discovered by time σ.
Take the desired σ-field F to be (informally stated) the σ-field
corresponding to all the information uncovered as we have just
described.
Taking Bi , i = 1, . . . , s, to be (when E occurs) the total
(internal) path length (i.e., number of key comparisons for
QuickSort) of the ith special leaf discovered by time σ, the
tree-exploration lemma follows.
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I hope you enjoyed attending
this talk!
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