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Introduction Analysis Summary

Structural Information

What:
B to develop compression algorithms for various structured

data

B we focus on compression of unlabelled graphs
Why:
B many interesting combinatorial objects have structure

(web graph, protein-protein interactions, collaboration
networks . . . )

B they can be abstracted by (unlabelled) graphs
How:
B using the structural entropy metric in order to measure

the amount of information embodied in a graph structure
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Graphs and Structural Entropy
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Q: How many bits are required to describe the structure of a graph?
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Graphs and Structural Entropy

B let G be a memory-less source producing graph according to
some random graph model

B the classic entropy of G is defined as

H (G) = −
∑
G∈G

PG(G ) lgPG(G )

B let S be a random structure model for the random graph
model G

B the probability of generating a given structure S ∈ S is

PS(S) =
∑

G∼=S ,G∈G
PG(G )

B the structural entropy for model G is defined as

HS (G) = −
∑
S∈S

PS(S) lgPS(S)
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Graphs and Structural Entropy
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Uniform Random Intersection Graph (URIG) Model

B n ∈ N+ – a number of nodes
B m ∈ N+ – a number of colors
B k ∈ {1, . . . ,m} – a number of colors sampled (without

replacement) independently by each node

By Un,m,k we understand a random memory-less source producing
undirected graphs with n vertices according to the following
process:
B each vertex chooses uniformly at random a set of k colors out

of m possible
B two vertices u and v are connected if and only if both sampled

at least one common color.
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Underlying Intersection Graph Gm,k

B has m′ =
(m
k

)
vertices that correspond to all distinct k-element

subsets of a set of colors {1, . . . ,m}
B to vertices v and u are connected iff they share at least one

color, i.e. v ∩ u 6= ∅

Lemma

The number of automorphisms of the underlying intersection graph
Gm,k is

|Aut (Gm,k)| =


(m
k

)
! when m < 2k ,(m

k

)
!! when m = 2k ,

m! when m > 2k .
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Underlying Intersection Graph Gm,k

proof idea:

|Aut (Gm,k)| =



(m
k

)
! when m < 2k , complete graph

(m
k

)
!! when m = 2k ,

the complement graph
contains only separated
cliques of size 2

m! when m > 2k ,
least symmetric case,
known result for a
Kneser graph, use of
Erdős-Ko-Rado theorem
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Random Composition Source

B let Kn,Gm,k
be a set of all m′-element compositions of n(

m′ =
(m
k

))
, where the elements are indexed by vertices of

Gm,k

Kn,Gm,k
=

{
K ∈ NV :

∑
v∈V

K (v) = n

}
B observe that

P (K = (k1, . . . , km′)) =

(
n

k1, . . . , km′

)
1
m′n

B therefore
HS (Un,m,k) = HS

(
Kn,Gm,k

)
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Structural Entropy of Uniform Random Intersection Graph
Source

Theorem (G., Kardas, Lemiesz, Majcher)

The structural entropy of a source generating uniform intersection
graphs Un,m,k , for m ≥ 2k , is

HS (Un,m,k) = H
(
Kn,Gm,k

)
−lg |Aut (Gm,k)|+E (lg |stab(K )|)+o(1),

assuming that n,
(m
k

)
→∞ in such a way that n

(mk)
= Θ (nτ ) for

any 0 < τ ≤ 1.
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Proof idea

B for m ≥ 2k , let K ∈ Kn,Gm,k
be a positive composition, then

[K ]≈ = orb(K )
df
= {K ◦ π : π ∈ Aut (Gm,k)}

and all compositions of [K ]≈ are equiprobable
B

HS (Un,m,k) = −E (lgP ([K ]≈))

B by orbit-stabilizer theorem:

|[K ]≈| = |orb(K )| =
|Aut (Gm,k) |
|stab(K )|

,

where stab(K ) = {π ∈ Aut (Gm,k) : π ◦ K = K}
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Structural Entropy of Uniform Random Intersection Graph
Source

Theorem (G., Kardas, Lemiesz, Majcher)

The structural entropy of a source generating uniform intersection
graphs Un,m,k , for m > 2k , is

HS (Un,m,k) =

(
m

k

)
lg
√
2πα− lg

√
2πn +

(m
k

)
− 1

2 ln(2)
− lg(m!)

+

(m
k

)
α ln(2)

b 1−2τ
τ
c∑

l=0

(−1)l l!Gl+2α
−l + o(1),

assuming that n,
(m
k

)
→∞ in such a way that α = n

(mk)
= Θ (nτ )

for any 0 < τ ≤ 1 and Gl is l ’th Gregory coefficient.
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Remarks

B the structural entropy of the source Un,m,k is relatively low
compared, for example, to the source PAn,m producing
preferential attachment graphs or to the source Gn,p producing
Erdős-Rényi graphs

B for the same expected number of edges in a graph we get:

HS (Un,m,k) = Θ (lg n)

HS (PAn,m) = Θ (n lg n)

HS (Gn,p) = Θ
(
n2)

B it can be justified by the symmetries present in the graphs
generated by Un,m,k
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Proof idea

Lemma

If n,
(m
k

)
→∞ in such a way that α = n

(mk)
= Θ (nτ ) for any

0 < τ ≤ 1, then

H
(
Kn,Gm,k

)
=

(
m

k

)
lg
√
2πα− lg

√
2πn +

(m
k

)
− 1

2 ln 2

+

(m
k

)
α ln 2

b 1−2τ
τ c∑

l=0

(−1)l l!Gl+2α
−l + o(1),

where Gl is l ’th Gregory coefficient (known also as l ’th logarithmic
number) defined by a Maclaurin series expansion of

y

log(1 + y)
= 1 +

∞∑
l=1

Gly l .
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Proof idea

B the entropy of the random composition source Kn,Gm,k
is

H
(
Kn,Gm,k

)
= −

∑
K∈Kn,Gm,k

P(K ) lg (P(K ))

B let us recall that P (K = (k1, . . . , km′)) =
( n
k1,...,km′

) 1
m′n

B after few steps we obtain a formula with Bernoulli sum

H
(
Kn,Gm,k

)
= n lg(m′)−lg(n!)+m′

n∑
t=0

lg (t!)

(
n

t

)(
1
m′

)t (
1− 1

m′

)n−t

B choosing the approach due to Knessl, i.e. using:

lnA = lim
ε→0

∫ ∞
ε

e−x − e−Ax

x
dx , A > 0,

seems to give us the biggest freedom of choosing α = n/
(
m
k

)
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Proof idea

Lemma

Let m > 2k , k ≥ 2 and n/
(m
k

)
→∞, then

E (lg |stab(K )|) = o(1) as n→∞.

proof idea:

B for n = ω
((m

k

)5) we have different bins loads whp
B otherwise

let π ∈ Aut (Gm,k) be a non-trivial automorphism of Gm,k that
is also a stabilizer of some random composition K
we can show that π has to move at least 2

(
m−2
k−1

)
vertices of

Gm,k

let π = C1 ◦ . . . ◦ C` then for all i : K = K ◦ Ci and therefore
all elements moved by the cycle Ci has to be equal
using poissonization technique we can bound the probability of
such event
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Optimal Compression Algorithm – work in progress

A lossless compression algorithm of a structure of URIG follows
directions given by the analysis of the structural entropy.

Compress(U ∈ Un,m,k) :

B contract vertices of U with the same colors subsets

B associate colors with the vertices of the underlying intersection
graph

to this point we have reconstructed the underlying intersection graph
Gm,k and the composition K that corresponds to the graph U

B use arithmetic encoding to compress the composition K

B output: (m, k , compressed(K ))
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Future work

B quantitative result for the case m = 2k : stabilizers counts!

B case when n is smaller or comparable to
(m
k

)
: contracted graph

is a subgraph of the underlying intersection graph Gm,k

B structural entropy of the binomial intersection graphs source

B other symmetric graphs sources
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Lessons learned

B asymmetric graphs → the difficulty can come from a source
probability distribution

B with growth of the symmetry in the graphs generated by a
source → the difficulty can come from both: a graph
symmetries and a source probability distribution

B the most symmetric case is a clique → the analysis is trivial
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Thank you!
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