On Compression of Uniform Random Intersection Graphs

Zbigniew Golebiewski Marcin Kardas Jakub Lemiesz Krzysztof Majcher

Wroclaw University of Science and Technology, Poland

AofA 2017

Structural Information

What:

\triangleright to develop compression algorithms for various structured data
\triangleright we focus on compression of unlabelled graphs Why:
\triangleright many interesting combinatorial objects have structure (web graph, protein-protein interactions, collaboration networks ...)
\triangleright they can be abstracted by (unlabelled) graphs

How:

\triangleright using the structural entropy metric in order to measure the amount of information embodied in a graph structure

Graphs and Structural Entropy

ZG - Zbigniew Golebiewski MK1 - Marcin Kardas MK2 - Marek Klonowski KM - Krzysztof Majcher JL - Jakub Lemiesz JC - Jacek Cichon WS - Wojtek Szpankowski AM - Abram Magner
OB - Olivier Bodini
DG - Daniele Gardy
BG - Bernhard Gittenberger

Graphs and Structural Entropy

ZG - Zbigniew Golebiewski MK1 - Marcin Kardas MK2 - Marek Klonowski KM - Krzysztof Majcher JL - Jakub Lemiesz JC - Jacek Cichon WS - Wojtek Szpankowski AM - Abram Magner OB - Olivier Bodini DG - Daniele Gardy BG - Bernhard Gittenberger
\{ZG, MK1, MK2, KM, JL, JC, WS, AM, OB, DG, BG\}
Q: How many bits are required to describe the structure of a graph?

Graphs and Structural Entropy

\triangleright let \mathcal{G} be a memory-less source producing graph according to some random graph model
\triangleright the classic entropy of \mathcal{G} is defined as

$$
H(\mathcal{G})=-\sum_{G \in \mathcal{G}} \mathbb{P}_{\mathcal{G}}(G) \lg \mathbb{P}_{\mathcal{G}}(G)
$$

the structural entropy for model \mathcal{G} is defined as

Graphs and Structural Entropy

\triangleright let \mathcal{G} be a memory-less source producing graph according to some random graph model
\triangleright the classic entropy of \mathcal{G} is defined as

$$
H(\mathcal{G})=-\sum_{G \in \mathcal{G}} \mathbb{P}_{\mathcal{G}}(G) \lg \mathbb{P}_{\mathcal{G}}(G)
$$

\triangleright let \mathcal{S} be a random structure model for the random graph model \mathcal{G}
\triangleright the probability of generating a given structure $S \in \mathcal{S}$ is

$$
\mathbb{P}_{\mathcal{S}}(S)=\sum_{G \cong S, G \in \mathcal{G}} \mathbb{P}_{\mathcal{G}}(G)
$$

\triangleright the structural entropy for model \mathcal{G} is defined as

$$
H_{\mathcal{S}}(\mathcal{G})=-\sum_{S \in \mathcal{S}} \mathbb{P}_{\mathcal{S}}(S) \lg \mathbb{P}_{\mathcal{S}}(S)
$$

Graphs and Structural Entropy

Uniform Random Intersection Graph (URIG) Model

$\triangleright n \in \mathbb{N}_{+}$- a number of nodes
$\triangleright m \in \mathbb{N}_{+}$- a number of colors
$\triangleright k \in\{1, \ldots, m\}$ - a number of colors sampled (without replacement) independently by each node
undirected graphs with n vertices according to the following process: each vertex chooses uniformly at random a set of k colors out of m possible two vertices u and v are connected if and only if both sampled at least one common color.

Uniform Random Intersection Graph (URIG) Model

$\triangleright n \in \mathbb{N}_{+}$- a number of nodes
$\triangleright m \in \mathbb{N}_{+}$- a number of colors
$\triangleright k \in\{1, \ldots, m\}$ - a number of colors sampled (without replacement) independently by each node

By $\mathcal{U}_{n, m, k}$ we understand a random memory-less source producing undirected graphs with n vertices according to the following process:
\triangleright each vertex chooses uniformly at random a set of k colors out of m possible
\triangleright two vertices u and v are connected if and only if both sampled at least one common color.

Underlying Intersection Graph $G_{m, k}$

\triangleright has $m^{\prime}=\binom{m}{k}$ vertices that correspond to all distinct k-element subsets of a set of colors $\{1, \ldots, m\}$
\triangleright to vertices v and u are connected iff they share at least one color, i.e. $v \cap u \neq \emptyset$

Underlying Intersection Graph $G_{m, k}$

\triangleright has $m^{\prime}=\binom{m}{k}$ vertices that correspond to all distinct k-element subsets of a set of colors $\{1, \ldots, m\}$
\triangleright to vertices v and u are connected iff they share at least one color, i.e. $v \cap u \neq \emptyset$

Lemma

The number of automorphisms of the underlying intersection graph $G_{m, k}$ is

$$
\mid \text { Aut }\left(G_{m, k}\right) \left\lvert\,= \begin{cases}\binom{m}{k}! & \text { when } m<2 k \\ \binom{m}{k}!! & \text { when } m=2 k \\ m! & \text { when } m>2 k\end{cases}\right.
$$

Underlying Intersection Graph $G_{m, k}$

proof idea:
\mid Aut $\left(G_{m, k}\right) \left\lvert\,=\left\{\begin{array}{lll}\binom{m}{k}! & \text { when } m<2 k, & \text { complete graph } \\ \binom{m}{k}!! & \text { when } m=2 k, & \begin{array}{l}\text { the complement graph } \\ \text { contains only separated } \\ \text { cliques of size 2 }\end{array} \\ m! & \text { when } m>2 k, & \begin{array}{l}\text { least symmetric case, } \\ \text { known result for a } \\ \text { Kneser graph, use of } \\ \\ \end{array} \begin{array}{l}\text { Erdős-Ko-Rado theorem }\end{array}\end{array}\right.\right.$

Random Composition Source

\triangleright let $\mathcal{K}_{n, G_{m, k}}$ be a set of all m^{\prime}-element compositions of n $\left(m^{\prime}=\binom{m}{k}\right)$, where the elements are indexed by vertices of $G_{m, k}$

$$
\mathcal{K}_{n, G_{m, k}}=\left\{K \in \mathbb{N}^{V}: \sum_{v \in V} K(v)=n\right\}
$$

\triangleright observe that

$$
\mathbb{P}\left(K=\left(k_{1}, \ldots, k_{m^{\prime}}\right)\right)=\binom{n}{k_{1}, \ldots, k_{m^{\prime}}} \frac{1}{m^{\prime n}}
$$

\triangleright therefore

$$
H_{\mathcal{S}}\left(\mathcal{U}_{n, m, k}\right)=H_{\mathcal{S}}\left(\mathcal{K}_{n, G_{m, k}}\right)
$$

Structural Entropy of Uniform Random Intersection Graph Source

Theorem (G., Kardas, Lemiesz, Majcher)

The structural entropy of a source generating uniform intersection graphs $\mathcal{U}_{n, m, k}$, for $m \geq 2 k$, is
$H_{\mathcal{S}}\left(\mathcal{U}_{n, m, k}\right)=H\left(\mathcal{K}_{n, G_{m, k}}\right)-\lg \left|\operatorname{Aut}\left(G_{m, k}\right)\right|+\mathbb{E}(\lg |\operatorname{stab}(K)|)+o(1)$,
assuming that $n,\binom{m}{k} \rightarrow \infty$ in such a way that $\frac{n}{\binom{m}{k}}=\Theta\left(n^{\tau}\right)$ for any $0<\tau \leq 1$.

Proof idea

\triangleright for $m \geq 2 k$, let $K \in \mathcal{K}_{n, G_{m, k}}$ be a positive composition, then

$$
[K]_{\approx}=\operatorname{orb}(K) \stackrel{d f}{=}\left\{K \circ \pi: \pi \in \operatorname{Aut}\left(G_{m, k}\right)\right\}
$$

and all compositions of $[K] \approx$ are equiprobable

$$
H_{\mathcal{S}}\left(\mathcal{U}_{n, m, k}\right)=-\mathbb{E}\left(\lg \mathbb{P}\left([K]_{\approx}\right)\right)
$$

\triangleright by orbit-stabilizer theorem:

$$
\left|[K]_{\approx}\right|=|\operatorname{orb}(K)|=\frac{\left|\operatorname{Aut}\left(G_{m, k}\right)\right|}{|\operatorname{stab}(K)|}
$$

where $\operatorname{stab}(K)=\left\{\pi \in \operatorname{Aut}\left(G_{m, k}\right): \pi \circ K=K\right\}$

Structural Entropy of Uniform Random Intersection Graph

 Source
Theorem (G., Kardas, Lemiesz, Majcher)

The structural entropy of a source generating uniform intersection graphs $\mathcal{U}_{n, m, k}$, for $m>2 k$, is

$$
\begin{aligned}
H_{\mathcal{S}}\left(\mathcal{U}_{n, m, k}\right)= & \binom{m}{k} \lg \sqrt{2 \pi \alpha}-\lg \sqrt{2 \pi n}+\frac{\binom{m}{k}-1}{2 \ln (2)}-\lg (m!) \\
& +\frac{\binom{m}{k}}{\alpha \ln (2)} \sum_{l=0}^{\left\lfloor\frac{1-2 \tau}{\tau}\right\rfloor}(-1)^{\prime} /!\mathrm{G}_{l+2} \alpha^{-।}+o(1),
\end{aligned}
$$

assuming that $n,\binom{m}{k} \rightarrow \infty$ in such a way that $\alpha=\frac{n}{\binom{m}{k}}=\Theta\left(n^{\tau}\right)$ for any $0<\tau \leq 1$ and $\mathrm{G}_{\text {/ }}$ is I'th Gregory coefficient.

Remarks

\triangleright the structural entropy of the source $\mathcal{U}_{n, m, k}$ is relatively low compared, for example, to the source $\mathcal{P} \mathcal{A}_{n, m}$ producing preferential attachment graphs or to the source $\mathcal{G}_{n, p}$ producing Erdős-Rényi graphs
\triangleright for the same expected number of edges in a graph we get:

$$
\begin{aligned}
H_{\mathcal{S}}\left(\mathcal{U}_{n, m, k}\right) & =\Theta(\lg n) \\
H_{\mathcal{S}}\left(\mathcal{P} \mathcal{A}_{n, m}\right) & =\Theta(n \lg n) \\
H_{\mathcal{S}}\left(\mathcal{G}_{n, p}\right) & =\Theta\left(n^{2}\right)
\end{aligned}
$$

\triangleright it can be justified by the symmetries present in the graphs generated by $\mathcal{U}_{n, m, k}$

Proof idea

Lemma

If $n,\binom{m}{k} \rightarrow \infty$ in such a way that $\alpha=\frac{n}{\binom{m}{k}}=\Theta\left(n^{\tau}\right)$ for any $0<\tau \leq 1$, then

$$
\begin{aligned}
H\left(\mathcal{K}_{n, G_{m, k}}\right)= & \binom{m}{k} \lg \sqrt{2 \pi \alpha}-\lg \sqrt{2 \pi n}+\frac{\binom{m}{k}-1}{2 \ln 2} \\
& +\frac{\binom{m}{k}}{\alpha \ln 2} \sum_{l=0}^{\left\lfloor\frac{1-2 \tau}{\tau}\right\rfloor}(-1)^{\prime} l!\mathrm{G}_{I+2} \alpha^{-I}+o(1),
\end{aligned}
$$

where $\mathrm{G}_{\text {I }}$ is I'th Gregory coefficient (known also as I'th logarithmic number) defined by a Maclaurin series expansion of

$$
\frac{y}{\log (1+y)}=1+\sum_{l=1}^{\infty} \mathrm{G}_{1} y^{\prime}
$$

Proof idea

\triangleright the entropy of the random composition source $\mathcal{K}_{n, G_{m, k}}$ is

$$
H\left(\mathcal{K}_{n, G_{m, k}}\right)=-\sum_{K \in \mathcal{K}_{n, G_{m, k}}} \mathbb{P}(K) \lg (\mathbb{P}(K))
$$

\triangleright let us recall that $\mathbb{P}\left(K=\left(k_{1}, \ldots, k_{m^{\prime}}\right)\right)=\binom{n}{k_{1}, \ldots, k_{m^{\prime}}} \frac{1}{m^{\prime n}}$
\triangleright after few steps we obtain a formula with Bernoulli sum

$$
H\left(\mathcal{K}_{n, G_{m, k}}\right)=n \lg \left(m^{\prime}\right)-\lg (n!)+m^{\prime} \sum_{t=0}^{n} \lg (t!)\binom{n}{t}\left(\frac{1}{m^{\prime}}\right)^{t}\left(1-\frac{1}{m^{\prime}}\right)^{n-t}
$$

\triangleright choosing the approach due to Knessl, i.e. using:

$$
\ln A=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{\infty} \frac{e^{-x}-e^{-A x}}{x} d x, \quad A>0
$$

seems to give us the biggest freedom of choosing $\alpha=n /\binom{m}{k}$

Proof idea

Lemma

Let $m>2 k, k \geq 2$ and $n /\binom{m}{k} \rightarrow \infty$, then

$$
\mathbb{E}(\lg |\operatorname{stab}(K)|)=o(1) \quad \text { as } n \rightarrow \infty .
$$

proof idea:
\triangleright for $n=\omega\left(\binom{m}{k}^{5}\right)$ we have different bins loads whp
\triangleright otherwise

- let $\pi \in \operatorname{Aut}\left(G_{m, k}\right)$ be a non-trivial automorphism of $G_{m, k}$ that is also a stabilizer of some random composition K
- we can show that π has to move at least $2\binom{m-2}{k-1}$ vertices of $G_{m, k}$
- let $\pi=C_{1} \circ \ldots \circ C_{\ell}$ then for all $i: K=K \circ C_{i}$ and therefore all elements moved by the cycle C_{i} has to be equal
- using poissonization technique we can bound the probability of such event

Optimal Compression Algorithm - work in progress

A lossless compression algorithm of a structure of URIG follows directions given by the analysis of the structural entropy.

Compress $\left(U \in \mathcal{U}_{n, m, k}\right)$:
\triangleright contract vertices of U with the same colors subsets
\triangleright associate colors with the vertices of the underlying intersection graph
to this point we have reconstructed the underlying intersection graph $G_{m, k}$ and the composition K that corresponds to the graph U
\triangleright use arithmetic encoding to compress the composition K
\triangleright output: $(m, k$, compressed $(K))$

Future work

\triangleright quantitative result for the case $m=2 k$: stabilizers counts!
\triangleright case when n is smaller or comparable to $\binom{m}{k}$: contracted graph is a subgraph of the underlying intersection graph $G_{m, k}$
\triangleright structural entropy of the binomial intersection graphs source
\triangleright other symmetric graphs sources

Lessons learned

\triangleright asymmetric graphs \rightarrow the difficulty can come from a source probability distribution
\triangleright with growth of the symmetry in the graphs generated by a source \rightarrow the difficulty can come from both: a graph symmetries and a source probability distribution
\triangleright the most symmetric case is a clique \rightarrow the analysis is trivial

Thank you!

