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Generic Problem: Giblbs Sampling

e We search for solutions:
X —=cC

e Input X (e. g. a graph) is
random!

e \Want solution c sfill fo be
stable

Gibbs measures

)
define a Maximum Entropy

Gibbs measure over c:

p(c|X) x exp(—73 - cost(c.X)) solutions



Generic Problem: “free energy”

Now
p(clX) = exp(—4 - cost — F(X)),

where the following is free energy:

F(X)=logZ(X) (here Z(X) s partition function).

Goal: compute expected “free energy” — hard:

Exf(X) =Ex |OgZ(X)
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Case Study: “Sparse” Minimum Bisection

e flashback to "Generic Problem”:
in high dimensions may require ®

) . . o— X/
solving via sampling! egQ
e solutions are dependent on

each other — not Random oY
Energy Model (next slide)! &

o contribution: free energy
asymptotics solved!

e another case study Lawler
Quadratic Assignment Problem
solved as well: (see the paper).
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Free Energy: History and Advances

e (Derrida’80) established REM — no
dependencies;

e (Talagrand’02): systematization; simple proof of
REM free energy phase transition and beyond:

im EI09Z(3. X1 _ [ & +log2 § < 2,/log2,
n By/log2 > 2\/log2.

n—oo
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Main Result: Setting

e mis number of solutions log m = o(N)

e N is size of one solution
(number of parameters)

e require to be “parameter s
rich” N

\

logm = o(N)



Main Result: 274 Order Phase Transition

Main theorem

Consider sparse MBP on a complete graph; edge
weights mutually independent within any given
solution; have mean p and variance 2. Then, the

following holds:
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provided logh <« d <« o
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Proof Outline — |

w . " Compute
e Introduce “solution overlap” D: dependencies
average intersection of two bisections

e D is key to understand dependencies
(remember we are no REM!)

Lemma 1
The following holds

Erand choice D = O(dA/n)-



Proof Outline — |l

e Infroduce event A: happens when Z is
close foEZ,i.e. A:={Z > eEZ} Compute

e Goalisto Compufe ]ID(A) dependencies

Fact 1 P(“Zclose to EZ"')

P(A) can be bounded by VarZ via et
Chebychev.

Lemma 2 (Buhmann et al., 2014)

VarZ can be asymptotically approximated
Vid Erand choice D:

VarZ ~ (Ez)z (0252Erond choice D) .



Proof Outline - Il|

e Break ElogZ into
ElogZ = E[logZ | A] - P(A) + E[log Z1(A)]
> (logEZ + log €)P(A) + E[log Z1(A)]

Fact 3

Can expand log EZ via Taylor expansion
(used assumptions of Theorem) and
bound P(A) from previous.

Fact 4
E[log Z1(A)]: enough to bound loosely

Compute
dependencies

P(*Z close to EZ"')
via
Var Z

Breaking
ElogZ
into two cond’s



Proof Outline - IV

e Finally, the right choice of e for two
regimes of 5 gives the phase transition
in lower bound

n—o0

. EllogZ] + - 1+22 5
I|m—_“ >{50\/§, 3

S5l

<
>

e The same phase transition happens
for upper bound, — easier to prove
(no computing dependencies)

Compute
dependencies

P(*Z close to EZ"")
via
Var Z

Breaking
Elog Z
into two cond'’s

Final bounding
via adjusting
parameter
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Application Setting:
Gibbs Sampling Regularizer

e Remember our approach:

data input posterior distribution sampling from
e
X ps(c|X) pa-(c|X)

e Q: what is regularizing here?

A: choice of g — essentially controls “width”
e Q: how?

A: maximize expected log-convolution:

g* = arg m/gx]EX@XN [Iog Z ps(c|X)ps(c|X")
C



Application Setting: Intuition

e Log-convolution is "almost” cross entropy;



Ex log(conv)

ps(c|X)

Application Setting: Intuition

Log-convolution is "almost” cross entropy;
It stabilizes solution output:

f =0.25: underfitting ~ § = 2.8: near-optimal B8 =19.5: overfitting

solutions solutions




Corollary and Application

Corollcry]
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¢ The log-convolution score can be rewritten:
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Thm Thm




Corollary: Log-Convolution
¢ The log-convolution score can be rewritten:
Elog ) _ ps(clX")ps(c|X")

= ElogZ(p, X + X”2—2£E log Z(3, X)

Thm Thm

e Thus possible to analytically compute score:

) more noise _— =1.0

S 08 less beta . 7 —05

Q 06 R
5% 0.4 less noise — =025
o greater beta — ~=0.05
x 0.2 noise-to-signal
= 00 ratio

( boiead
1072 107! 10° 10 10°
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Conclusion

e We computed asymptotically precisely the value
of Elog Z with small dependencies

¢ |t has applications to model validation
(submitted to J. of Theor. CS) in machine
learning: method involves comparing two
fluctuating Gibbs distributions

o Still not found a general way (and probably
there is no such way)



Thanks for your attention!
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