Free Energy Rates for Parameter Rich Optimization Problems

Joachim M. Buhmann¹, Julien Dumazert¹, Alexey Gronskiy¹, Wojciech Szpankowski²

¹ETH Zurich, {jbuhmann, alexeygr}@inf.ethz.ch, julien.dumazert@gmail.com,

²Purdue University, spa@cs.purdue.edu

AofA Workshop Princeton, 20th June 2017

Roadmap

Generic Problem

Generic Problem: Gibbs Sampling

• We search for solutions: $X \rightarrow c$

Generic Problem: Gibbs Sampling

- We search for solutions: $X \rightarrow c$
- Input X (e. g. a graph) is random!

Generic Problem: Gibbs Sampling

- We search for solutions: $X \rightarrow c$
- Input X (e. g. a graph) is random!
- Want solution *c* still to be stable

define a Maximum Entropy Gibbs measure over c:

 $p(c|X) \propto \exp(-\beta \cdot \operatorname{cost}(c,X))$

solutions

Generic Problem: "free energy"

Now

$$p(c|X) = \exp(-\beta \cdot \operatorname{cost} - \mathcal{F}(X)),$$

where the following is free energy:

 $\mathcal{F}(X) = \log Z(X)$ (here Z(X) is partition function).

Goal: compute expected "free energy" - hard:

$$\mathbb{E}_X \mathcal{F}(X) = \mathbb{E}_X \log Z(X).$$

Find two subgraphs of some small size *d* with minimum edge cost between them.

Find two subgraphs of some small size *d* with minimum edge cost between them.

Find two subgraphs of some small size *d* with minimum edge cost between them.

 flashback to "Generic Problem": in high dimensions may require solving via sampling!

- flashback to "Generic Problem": in high dimensions may require solving via sampling!
- solutions are dependent on each other — not Random Energy Model (next slide)!

- flashback to "Generic Problem": in high dimensions may require solving via sampling!
- solutions are dependent on each other — not Random Energy Model (next slide)!
- contribution: free energy asymptotics solved!

- flashback to "Generic Problem": in high dimensions may require solving via sampling!
- solutions are dependent on each other — not Random Energy Model (next slide)!
- contribution: free energy asymptotics solved!
- another case study Lawler Quadratic Assignment Problem solved as well: (see the paper).

Free Energy: History and Advances

(Derrida'80) established REM — no dependencies;

Free Energy: History and Advances

- (Derrida'80) established REM no dependencies;
- (Talagrand'02): systematization; simple proof of REM free energy phase transition and beyond:

$$\lim_{n\to\infty}\frac{\mathbb{E}[\log Z(\beta,X)]}{n} = \begin{cases} \frac{\beta^2}{4} + \log 2 & \beta < 2\sqrt{\log 2}, \\ \beta\sqrt{\log 2} & \beta \ge 2\sqrt{\log 2}. \end{cases}$$

Main Result

Main Result: Setting

• *m* is number of solutions

Main Result: Setting

- *m* is number of solutions
- *N* is size of one solution (number of parameters)

Main Result: Setting

- *m* is number of solutions
- *N* is size of one solution (number of parameters)
- require to be "parameter rich"

$$\log m = o(N)$$

Main Result: 2nd Order Phase Transition

Main theorem

Consider sparse MBP on a complete graph; edge weights mutually independent within any given solution; have mean μ and variance σ^2 . Then, the following holds:

$$\lim_{n \to \infty} \frac{\mathbb{E}[\log Z] + \hat{\beta} \mu \sqrt{N \log m}}{\log m} = \begin{cases} 1 + \frac{\hat{\beta}^2 \sigma^2}{2}, & \hat{\beta} < \frac{\sqrt{2}}{\sigma}, \\ \hat{\beta} \sigma \sqrt{2}, & \hat{\beta} \ge \frac{\sqrt{2}}{\sigma} \end{cases}$$

provided log
$$n \ll d \ll \frac{n^{2/7}}{\sqrt{\log n}}$$
.

Proof Outline

Proof Outline - I

- Introduce "solution overlap" D: average intersection of two bisections
- *D* is key to understand **dependencies** (remember we are no REM!)

Lemma 1

The following holds

$$\mathbb{E}_{\text{rand choice}} D = \mathcal{O}(d^4/n).$$

Proof Outline – II

- Introduce event A: happens when Z is close to $\mathbb{E}Z$, i. e. $A := \{Z \ge \epsilon \mathbb{E}Z\}$
- Goal is to compute $\mathbb{P}(A)$

Fact 1

 $\mathbb{P}(A)$ can be bounded by VarZ via Chebychev.

Lemma 2 (Buhmann et al., 2014)

VarZ can be asymptotically approximated via $\mathbb{E}_{\text{rand choice}} D$:

$$\operatorname{Var} Z \sim (\mathbb{E} Z)^2 (\sigma^2 \beta^2 \mathbb{E}_{\operatorname{rand choice}} D).$$

Proof Outline – III

• Break $\mathbb{E} \log Z$ into

 $\mathbb{E} \log Z = \mathbb{E}[\log Z \mid A] \cdot \mathbb{P}(A) + \mathbb{E}[\log Z \mathbb{1}(\bar{A})]$ $\geq (\log \mathbb{E}Z + \log \epsilon) \mathbb{P}(A) + \mathbb{E}[\log Z \mathbb{1}(\bar{A})]$

Fact 3

Can expand $\log \mathbb{E}Z$ via Taylor expansion (used assumptions of Theorem) and bound $\mathbb{P}(A)$ from previous.

Fact 4

 $\mathbb{E}[\log Z\mathbb{1}(\bar{A})]$: enough to bound loosely

Proof Outline – IV

 Finally, the right choice of ε for two regimes of β gives the phase transition in lower bound

$$\lim_{n\to\infty}\frac{\mathbb{E}[\log Z]+\cdots}{\cdots} > \begin{cases} 1+\frac{\hat{\beta}^2\sigma^2}{2}, & \hat{\beta}<\frac{\sqrt{2}}{\sigma},\\ \hat{\beta}\sigma\sqrt{2}, & \hat{\beta}\geq\frac{\sqrt{2}}{\sigma}. \end{cases}$$

 The same phase transition happens for upper bound, — easier to prove (no computing dependencies)

Possible Application

• Remember our approach:

Application Setting: Gibbs Sampling Regularizer

• Remember our approach:

Q: what is regularizing here?
 A: choice of β — essentially controls "width"

Application Setting: Gibbs Sampling Regularizer

• Remember our approach:

- Q: what is regularizing here?
 A: choice of β essentially controls "width"
- **Q:** how?

A: maximize expected log-convolution:

$$eta^* = rg\max_eta \mathbb{E}_{X',X''} \Big[\log \sum_c \mathcal{P}_eta(c|X') \mathcal{P}_eta(c|X'') \Big]$$

Application Setting: Intuition

Log-convolution is "almost" cross entropy;

Application Setting: Intuition

- Log-convolution is "almost" cross entropy;
- It stabilizes solution output:

Corollary and Application

Corollary: Log-Convolution

• The log-convolution score can be rewritten:

$$\mathbb{E}\log\sum_{c} p_{\beta}(c|X')p_{\beta}(c|X'') = \underbrace{\mathbb{E}\log Z(\beta, X' + X'')}_{\text{Thm}} - 2\underbrace{\mathbb{E}\log Z(\beta, X)}_{\text{Thm}}$$

Corollary: Log-Convolution

• The log-convolution score can be rewritten:

$$\begin{split} \mathbb{E}\log\sum_{c} p_{\beta}(c|X')p_{\beta}(c|X'') \\ &=\underbrace{\mathbb{E}\log Z(\beta,X'+X'')}_{\text{Thm}} -2\underbrace{\mathbb{E}\log Z(\beta,X)}_{\text{Thm}} \end{split}$$

• Thus possible to analytically compute score:

Conclusion

- We computed asymptotically precisely the value of $\mathbb{E} \log Z$ with small dependencies
- It has applications to model validation (submitted to J. of Theor. CS) in machine learning: method involves comparing two fluctuating Gibbs distributions
- Still not found a general way (and probably there is no such way)

Thanks for your attention!

References I

E. T. Jaynes,

Information Theory and Statistical Mechanics. Phys. Rev., 106, 1957, p. 620.

W. Szpankowski,

Combinatorial optimization problems for which almost every algorithm is asymptotically optimal. Optimization, 33, 1995, pp. 359–368.

M. Talagrand.

Spin Glasses: A Challenge for Mathematicians. Springer, NY, 2003.

References II

- J. Vannimenus and M. Mézard, On the Statistical Mechanics of Optimization Problems of the traveling Salesman Type.
 J. de Physique Lettres, 45, 1984, pp. 1145–1153.
- J. M. Buhmann, A. Gronskiy and W. Szpankowski Free Energy Rates for a Class of Combinatorial Optimization Problems AofA'14, Paris
- J. M. Buhmann, A. Gronskiy, J. Dumazert and W. Szpankowski
 Phase Transitions in Parameter Rich Optimization Problems
 SODA/ANALCO'17, Barcelona