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Generic Problem: Gibbs Sampling

• We search for solutions:
X → c

• Input X (e. g. a graph) is
random!

• Want solution c still to be
stable

⇓
define a Maximum Entropy
Gibbs measure over c:

p(c|X ) ∝ exp(−β · cost(c,X)) solutions
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Generic Problem: “free energy”

Now
p(c|X ) = exp

(
−β · cost−F(X )

)
,

where the following is free energy:

F(X ) = log Z (X ) (here Z (X ) is partition function).

Goal: compute expected “free energy” — hard:

EXF(X ) = EX log Z (X ).
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Case Study: “Sparse” Minimum Bisection

Find two subgraphs of some small size d with
minimum edge cost between them.
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Case Study: “Sparse” Minimum Bisection

• flashback to “Generic Problem”:
in high dimensions may require
solving via sampling!

• solutions are dependent on
each other — not Random
Energy Model (next slide)!

• contribution: free energy
asymptotics solved!

• another case study Lawler
Quadratic Assignment Problem
solved as well: (see the paper).
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Free Energy: History and Advances

• [Derrida’80] established REM — no
dependencies;

• [Talagrand’02]: systematization; simple proof of
REM free energy phase transition and beyond:

lim
n→∞

E[log Z (β,X )]

n
=

{
β2

4 + log 2 β < 2
√

log 2,
β
√

log 2 β ≥ 2
√

log 2.
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Main Result: Setting
• m is number of solutions

• N is size of one solution
(number of parameters)

• require to be “parameter
rich”

log m = o(N)
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Main Result: 2nd Order Phase Transition

Main theorem
Consider sparse MBP on a complete graph; edge
weights mutually independent within any given
solution; have mean µ and variance σ2. Then, the
following holds:

lim
n→∞

E[log Z ] + β̂µ
√

N log m
log m

=

{
1 + β̂2σ2

2 , β̂ <
√

2
σ
,

β̂σ
√

2, β̂ ≥
√

2
σ

provided log n� d � n2/7√
log n

.
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Proof Outline – I

• Introduce “solution overlap” D:
average intersection of two bisections

• D is key to understand dependencies
(remember we are no REM!)

Lemma 1
The following holds

Erand choiceD = O(d4/n).

Compute
dependencies 

P(``Z close to EZ’’)
via
Var Z

Breaking 
E log Z 
into two cond’s

Final bounding
via adjusting
parameter
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Proof Outline – II
• Introduce event A: happens when Z is

close to EZ , i. e. A := {Z ≥ εEZ}
• Goal is to compute P(A)

Fact 1
P(A) can be bounded by VarZ via
Chebychev.

Lemma 2 [Buhmann et al., 2014]
VarZ can be asymptotically approximated
via Erand choiceD:

VarZ ∼ (EZ )2(σ2β2Erand choiceD
)
.

Compute
dependencies 

P(``Z close to EZ’’)
via
Var Z

Breaking 
E log Z 
into two cond’s

Final bounding
via adjusting
parameter

AofA, Princeton, 20 Jun 2017 Alexey Gronskiy 13/24



Proof Outline – III

• Break E log Z into

E log Z = E[log Z | A] · P(A) + E[log Z1(Ā)]

≥ (logEZ + log ε)P(A) + E[log Z1(Ā)]

Fact 3
Can expand logEZ via Taylor expansion
(used assumptions of Theorem) and
bound P(A) from previous.

Fact 4
E[log Z1(Ā)]: enough to bound loosely

Compute
dependencies 

P(``Z close to EZ’’)
via
Var Z

Breaking 
E log Z 
into two cond’s

Final bounding
via adjusting
parameter
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Proof Outline – IV

• Finally, the right choice of ε for two
regimes of β gives the phase transition
in lower bound

lim
n→∞

E[log Z ] + · · ·
· · ·

>

{
1 + β̂2σ2

2 , β̂ <
√

2
σ
,

β̂σ
√

2, β̂ ≥
√

2
σ
.

• The same phase transition happens
for upper bound, — easier to prove
(no computing dependencies)

Compute
dependencies 

P(``Z close to EZ’’)
via
Var Z

Breaking 
E log Z 
into two cond’s

Final bounding
via adjusting
parameter
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Application Setting:
Gibbs Sampling Regularizer

• Remember our approach:

• Q: what is regularizing here?
A: choice of β — essentially controls “width”

• Q: how?
A: maximize expected log-convolution:

β∗ = arg max
β

EX ′,X ′′

[
log

∑
c

pβ(c|X ′)pβ(c|X ′′)
]
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Application Setting: Intuition
• Log-convolution is “almost” cross entropy;

• It stabilizes solution output:
β = 0.25: underfitting

c o
p
t
(X

′ )

c o
p
t
(X

′′
)

pβ(·|X ′) pβ(·|X ′′)

β = 2.8: near-optimal β = 19.5: overfitting

2 6 10 14 18

β = 0.25

β = 2.8

β = 19.5

β

solutions solutions solutions
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Corollary: Log-Convolution
• The log-convolution score can be rewritten:

E log
∑

c

pβ(c|X ′)pβ(c|X ′′)

= E log Z (β,X ′ + X ′′)︸ ︷︷ ︸
Thm

−2E log Z (β,X )︸ ︷︷ ︸
Thm

• Thus possible to analytically compute score:

noise-to-signal

ratio

less noise 

greater beta

more noise 

less beta
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Conclusion

• We computed asymptotically precisely the value
of E log Z with small dependencies

• It has applications to model validation
(submitted to J. of Theor. CS) in machine
learning: method involves comparing two
fluctuating Gibbs distributions

• Still not found a general way (and probably
there is no such way)
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Thanks for your attention!
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