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Dots on a Plane

Definition
Let A and B be two sets of n points in R2, each with the property
that no two points lie on the same horizontal or vertical line.
Say that A is order isomorphic to B (denoted A ∼ B) if A can be
transformed into B by stretching, contracting, and translating the
axes horizontally and vertically.
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Permutation Classes

Definition
A permutation π contains σ as a pattern if the plot of σ is order
isomorphic to a subset of the plot of π.

Definition
The set of all permutations ordered by pattern containment is
known as the permutation pattern poset. A downset of this
poset is called a permutation class.

Definition
The set of permutations avoiding a specified pattern (or set of
patterns) σ is denoted Av(σ).



Av(132) and Av(123)

Question
What do 132- and 123-avoiding permutations look like?
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Patterns as Random Variables

Theorem (Bóna 2007)

For a randomly selected permutation of length n, the random
variables νσ are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns
σ and ρ, the random variables νσ and νρ are asymptotically jointly
normally distributed as n→ ∞.
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Random Restricted Permutations

0 20 40 60 80 100

x

0

20

40

60

80

100

y

ν12 ν21 Avg
685 4265 2475

ν123 ν132 ν213 ν231 ν312 ν321 Avg
2426 0 14874 15208 14896 114296 26950



Exact Behavior

Fact
In Sn, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern σ ∈ Sk ,
we have

νσ(Sn) =
n!
k !

(
n
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)
.

Question
How does this change when we replace Sn with a proper
permutation class?

123 132 213 231 312 321
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Equipopularity

Definition
The popularity of a pattern σ in a class C is the sequence

νσ(C1), νσ(C2), νσ(C3), νσ(C4), . . . .

Definition
Patterns are said to be equipopular if they have the same number
of occurrences (within a specified set or across two different sets).



Equipopularity — Warm up

Fact
For a class C and a pattern σ, we have

νσ(Cn) = |{(π; σ∗) : π ∈ Cn, σ∗ ≺ π}|.

Proposition

In the class Av(132), σ and σ−1 are equipopular.

Proof.

(π, σ) 7→ (π−1, σ−1).
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History

Theorem (Bóna 2010)

Within the class Av(132):

ν123 < ν213 = ν231 = ν312 < ν321.

Theorem (H 2012)

ν231(Av 132) = ν231(Av 123).

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are
equipopular within Av(132).

Theorem (Chua, Sankar 2013)

If two patterns are equipopular in Av(132), then they have the
same structure.
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Separable Permutations

Definition
The separable permutations are those which avoid the patterns
2413 and 3142.

Alternate Definition
The separable permutations are those which can be constructed via
arbitrary skew and direct sums of the permutation 1.
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Separable Permutations

Definition
Given two permutations π and σ, their direct sum (π ⊕ σ) and
skew sum (π 	 σ) are defined as follows:

π

σ

π ⊕ σ

π

σ

π 	 σ
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Popularity of Separable Permutations — A Classification Theorem

Theorem (Albert, H, Pantone)

Two patterns are equipopular in the separables if and only if they
have the same structure. Further, the equipopularity classes are
in bijection with the set of integer partitions.
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Corollary

The number of distinct levels in these histograms is equal to the
number of integer partitions.
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Proof Idea
Equipopularity can be characterized by tree structure.

Pattern Containment:

⊕

	 	 	

⊕

⊕

	



Tree Patterns

Proof Idea
Equipopularity can be characterized by tree structure.

Pattern Containment:

⊕

	 	 	

⊕

⊕

	



Strategy

Part 1
Find the operations on trees which preserve popularity.

Part 2
Show that equipopularity implies that their trees are related by one
of these operations.



Preserving Popularity — Tree Operations

Lemma
The following operations preserve popularity:

I Swapping ⊕ and 	 signs

I Rearranging the children of any node

I Tree rotation
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λk−1

. . .
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≡
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. . .

λ := λ1 ≥ λ2 ≥ · · · ≥ λk
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The Other Direction

Lemma
Different partitions lead to different enumerations.



Rough Sketch of Proof

Idea 1:
Given any arbitrary pattern, we can factor its popularity generating
function into the popularity generating functions for monotone
runs.
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Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we
can uniquely factor into its component parts, and thus recover the
lengths of each monotone pattern.

How?

I Recursively build a bivariate popularity generating function for
all monotone patterns.

I Notice (or let Sage/Maple/Mathematica/Singular tell you)
that these are related to the Gegenbauer polynomials, a
family of orthogonal polynomials.

I Use the orthogonality of these polynomials to uniquely factor
any product.



Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we
can uniquely factor into its component parts, and thus recover the
lengths of each monotone pattern.

How?

I Recursively build a bivariate popularity generating function for
all monotone patterns.

I Notice (or let Sage/Maple/Mathematica/Singular tell you)
that these are related to the Gegenbauer polynomials, a
family of orthogonal polynomials.

I Use the orthogonality of these polynomials to uniquely factor
any product.



Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we
can uniquely factor into its component parts, and thus recover the
lengths of each monotone pattern.

How?

I Recursively build a bivariate popularity generating function for
all monotone patterns.

I Notice (or let Sage/Maple/Mathematica/Singular tell you)
that these are related to the Gegenbauer polynomials, a
family of orthogonal polynomials.

I Use the orthogonality of these polynomials to uniquely factor
any product.



Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we
can uniquely factor into its component parts, and thus recover the
lengths of each monotone pattern.

How?

I Recursively build a bivariate popularity generating function for
all monotone patterns.

I Notice (or let Sage/Maple/Mathematica/Singular tell you)
that these are related to the Gegenbauer polynomials, a
family of orthogonal polynomials.

I Use the orthogonality of these polynomials to uniquely factor
any product.



Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we
can uniquely factor into its component parts, and thus recover the
lengths of each monotone pattern.

How?

I Recursively build a bivariate popularity generating function for
all monotone patterns.

I Notice (or let Sage/Maple/Mathematica/Singular tell you)
that these are related to the Gegenbauer polynomials, a
family of orthogonal polynomials.

I Use the orthogonality of these polynomials to uniquely factor
any product.



Corollary

λ1

λ2

λ3
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Length n canonical representative ↔ partition of the integer n− 1.

(We also have a process for building generating functions and calculating asymptotics

for each of these popularities)



Corollary

λ1

λ2

λ3

λ4

λ5
. . . ↔ λ1 + λ2 + · · ·+ λk−1 + (λk − 1)

Length n canonical representative ↔ partition of the integer n− 1.

(We also have a process for building generating functions and calculating asymptotics

for each of these popularities)



Open Questions/Directions

I Are there other instances of non-trivial equipopularity within
other permutation classes?

I Are there other instances of equipopularity across different
permutation classes?

I Are there non-trivial examples of equidistribution of pattern
occurrences within or across permutation classes?

I Miner and Pak recently introduced the notion of the
asymptotic shape of permutation classes, and calculated some
examples. How can we similarly characterize arbitrary classes?

I Bassino, Bouvel, Féray, Gerin, and Pierrot recently calculated
the distribution of separable patterns by expressing the class
as a “Brownian separable permuton.” Is this possible for other
classes?



Thank You!


