Pattern Distributions in Random Restricted Permutations

Cheyne Homberger
University of Maryland, Baltimore County

AofA'17
Princeton University
June 19, 2017

Plotting Permutations

Plotting Permutations

Definition

If π is a permutation of length n, then the plot of π is the set of points

$$
\{(1, \pi(1)),(2, \pi(2)), \cdots(n, \pi(n))\} \subset \mathbb{R}^{2}
$$

Plotting Permutations

Definition

If π is a permutation of length n, then the plot of π is the set of points

$$
\{(1, \pi(1)),(2, \pi(2)), \cdots(n, \pi(n))\} \subset \mathbb{R}^{2}
$$

$$
\pi=35142
$$

Plotting Permutations

Definition

If π is a permutation of length n, then the plot of π is the set of points

$$
\{(1, \pi(1)),(2, \pi(2)), \cdots(n, \pi(n))\} \subset \mathbb{R}^{2}
$$

$$
\pi=35142
$$

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Dots on a Plane

Definition

Let A and B be two sets of n points in \mathbb{R}^{2}, each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

Permutation Classes

Definition

A permutation π contains σ as a pattern if the plot of σ is order isomorphic to a subset of the plot of π.

Definition

The set of all permutations ordered by pattern containment is known as the permutation pattern poset. A downset of this poset is called a permutation class.

Definition

The set of permutations avoiding a specified pattern (or set of patterns) σ is denoted $\operatorname{Av}(\sigma)$.

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question
What do 132- and 123 -avoiding permutations look like?

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question

What do 132- and 123 -avoiding permutations look like?
Av (132)

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question

What do 132- and 123 -avoiding permutations look like?
Av (132)

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question

What do 132- and 123 -avoiding permutations look like?

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question

What do 132- and 123-avoiding permutations look like?

$\operatorname{Av}(123)$

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

Question

What do 132- and 123-avoiding permutations look like?

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132)$
$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(132) \mapsto \operatorname{Av}(123)$

$\operatorname{Av}(132)$ and $\operatorname{Av}(123)$

$\operatorname{Av}(123)$
Theorem
$\operatorname{Av}(132)$ is in bijection with $\operatorname{Av}(123)$.

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

$$
132 \prec 526413
$$

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

$$
\begin{gathered}
132 \prec 526413 \\
v_{132}(526413)=3
\end{gathered}
$$

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

$$
\begin{gathered}
132 \prec 526413 \\
v_{132}(526413)=3
\end{gathered}
$$

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

$$
\begin{gathered}
132 \prec 526413 \\
v_{132}(526413)=3
\end{gathered}
$$

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $v_{\sigma}(\pi)$.

$$
\begin{gathered}
132 \prec 526413 \\
v_{132}(526413)=3
\end{gathered}
$$

Patterns as Random Variables

Patterns as Random Variables

Theorem (Bóna 2007)
For a randomly selected permutation of length n, the random variables v_{σ} are asymptotically normal as n approaches infinity.

Patterns as Random Variables

Theorem (Bóna 2007)
For a randomly selected permutation of length n, the random variables v_{σ} are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)
For a randomly selected permutation of length n and two patterns σ and ρ, the random variables v_{σ} and v_{ρ} are asymptotically jointly normally distributed as $n \rightarrow \infty$.

Random Permutations

Random Permutations

Random Permutations

v_{123}	v_{132}	v_{213}	v_{231}	v_{312}	v_{321}	Avg
35357	30063	31414	22321	23348	19197	26950

Random Restricted Permutations

Exact Behavior

Fact

In \mathfrak{S}_{n}, the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_{k}$, we have

$$
v_{\sigma}\left(\mathfrak{S}_{n}\right)=\frac{n!}{k!}\binom{n}{k} .
$$

Exact Behavior

Fact

In \mathfrak{S}_{n}, the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_{k}$, we have

$$
v_{\sigma}\left(\mathfrak{S}_{n}\right)=\frac{n!}{k!}\binom{n}{k} .
$$

Question

How does this change when we replace \mathfrak{S}_{n} with a proper permutation class?

Exact Behavior

Fact

In \mathfrak{S}_{n}, the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_{k}$, we have

$$
v_{\sigma}\left(\mathfrak{S}_{n}\right)=\frac{n!}{k!}\binom{n}{k} .
$$

Question

How does this change when we replace \mathfrak{S}_{n} with a proper permutation class?

Exact Behavior

Fact

In \mathfrak{S}_{n}, the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_{k}$, we have

$$
v_{\sigma}\left(\mathfrak{S}_{n}\right)=\frac{n!}{k!}\binom{n}{k} .
$$

Question

How does this change when we replace \mathfrak{S}_{n} with a proper permutation class?

Equipopularity

Definition

The popularity of a pattern σ in a class C is the sequence

$$
v_{\sigma}\left(C_{1}\right), v_{\sigma}\left(C_{2}\right), v_{\sigma}\left(C_{3}\right), v_{\sigma}\left(C_{4}\right), \ldots
$$

Definition

Patterns are said to be equipopular if they have the same number of occurrences (within a specified set or across two different sets).

Equipopularity - Warm up

Fact
For a class C and a pattern σ, we have

$$
v_{\sigma}\left(C_{n}\right)=\left|\left\{\left(\pi ; \sigma^{*}\right): \pi \in C_{n}, \sigma^{*} \prec \pi\right\}\right| .
$$

Equipopularity — Warm up

Fact
For a class C and a pattern σ, we have

$$
v_{\sigma}\left(C_{n}\right)=\left|\left\{\left(\pi ; \sigma^{*}\right): \pi \in C_{n}, \sigma^{*} \prec \pi\right\}\right| .
$$

Proposition
In the class $\operatorname{Av}(132), \sigma$ and σ^{-1} are equipopular.
Proof.

$$
(\pi, \sigma) \mapsto\left(\pi^{-1}, \sigma^{-1}\right) .
$$

History

History

Theorem (Bóna 2010)
Within the class $\operatorname{Av}(132)$:

$$
v_{123}<v_{213}=v_{231}=v_{312}<v_{321}
$$

History

Theorem (Bóna 2010)
Within the class $\operatorname{Av}(132)$:

$$
v_{123}<v_{213}=v_{231}=v_{312}<v_{321}
$$

Theorem (H 2012)

$$
v_{231}(A v 132)=v_{231}(A v 123)
$$

History

Theorem (Bóna 2010)
Within the class $\operatorname{Av}(132)$:

$$
v_{123}<v_{213}=v_{231}=v_{312}<v_{321}
$$

Theorem (H 2012)

$$
v_{231}(\operatorname{Av} 132)=v_{231}(\operatorname{Av} 123) .
$$

Theorem (Rudolph 2013)
If two patterns have the same structure, then they are equipopular within $\operatorname{Av}(132)$.

History

Theorem (Bóna 2010)
Within the class $\operatorname{Av}(132)$:

$$
v_{123}<v_{213}=v_{231}=v_{312}<v_{321}
$$

Theorem (H 2012)

$$
v_{231}(A v 132)=v_{231}(A v 123)
$$

Theorem (Rudolph 2013)
If two patterns have the same structure, then they are equipopular within Av (132).

Theorem (Chua, Sankar 2013)
If two patterns are equipopular in $\operatorname{Av}(132)$, then they have the same structure.

History (in Pictures)

Separable Permutations

Separable Permutations

Definition

The separable permutations are those which avoid the patterns 2413 and 3142.

Separable Permutations

Definition

The separable permutations are those which avoid the patterns 2413 and 3142.

Alternate Definition

The separable permutations are those which can be constructed via arbitrary skew and direct sums of the permutation 1.

Separable Permutations

Definition

Given two permutations π and σ, their direct sum ($\pi \oplus \sigma$) and skew sum $(\pi \ominus \sigma)$ are defined as follows:

$\pi \oplus \sigma$

$\pi \ominus \sigma$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Separable Permutations

$$
\pi=215643798=(1 \ominus 1) \oplus((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus(1 \ominus 1) .
$$

Popularity of Separable Permutations - A Classification Theorem

Popularity of Separable Permutations - A Classification Theorem

Theorem (Albert, H, Pantone)
Two patterns are equipopular in the separables if and only if they have the same structure. Further, the equipopularity classes are in bijection with the set of integer partitions.

Popularity in the Separables

Three-Patterns

Four-Patterns

Popularity in the Separables

Three-Patterns
$\underset{\sim}{N}$ M

Four-Patterns

Corollary
The number of distinct levels in these histograms is equal to the number of integer partitions.

Tree Patterns

Proof Idea

Equipopularity can be characterized by tree structure.

Tree Patterns

Proof Idea

Equipopularity can be characterized by tree structure.
Pattern Containment:

Strategy

Part 1

Find the operations on trees which preserve popularity.

Part 2

Show that equipopularity implies that their trees are related by one of these operations.

Preserving Popularity - Tree Operations

Lemma

The following operations preserve popularity:

- Swapping \oplus and \ominus signs
- Rearranging the children of any node
- Tree rotation

Preserving Popularity — Tree Operations

Sketch of Proof

Preserving Popularity - Tree Operations

Sketch of Proof

Preserving Popularity - Tree Operations

Sketch of Proof

Preserving Popularity - Tree Operations

Sketch of Proof

Preserving Popularity - Tree Operations

Sketch of Proof

Canonical Representatives

$$
\lambda_{k}+1
$$

$$
\lambda:=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}
$$

Canonical Representatives

The Other Direction

Lemma
Different partitions lead to different enumerations.

Rough Sketch of Proof

Rough Sketch of Proof

Idea 1:
Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Rough Sketch of Proof

Idea 1:
Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

$$
\lambda_{5}
$$

Rough Sketch of Proof

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

Rough Sketch of Proof

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.

Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.

Rough Sketch of Proof

Idea 2:
Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.
- Use the orthogonality of these polynomials to uniquely factor any product.

Corollary

Corollary

(We also have a process for building generating functions and calculating asymptotics for each of these popularities)

Open Questions/Directions

- Are there other instances of non-trivial equipopularity within other permutation classes?
- Are there other instances of equipopularity across different permutation classes?
- Are there non-trivial examples of equidistribution of pattern occurrences within or across permutation classes?
- Miner and Pak recently introduced the notion of the asymptotic shape of permutation classes, and calculated some examples. How can we similarly characterize arbitrary classes?
- Bassino, Bouvel, Féray, Gerin, and Pierrot recently calculated the distribution of separable patterns by expressing the class as a "Brownian separable permuton." Is this possible for other classes?

Thank You!

