Pattern Distributions in Random Restricted Permutations

Cheyne Homberger

University of Maryland, Baltimore County

AofA'17 Princeton University June 19, 2017

Definition

If π is a permutation of length n, then the **plot** of π is the set of points

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

If π is a permutation of length n, then the **plot** of π is the set of points

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

If π is a permutation of length n, then the **plot** of π is the set of points

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is **order isomorphic** to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let *A* and *B* be two sets of *n* points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that *A* is **order isomorphic** to *B* (denoted $A \sim B$) if *A* can be transformed into *B* by stretching, contracting, and translating the axes horizontally and vertically.

Permutation Classes

Definition

A permutation π contains σ as a pattern if the plot of σ is order isomorphic to a subset of the plot of π .

Definition

The set of all permutations ordered by pattern containment is known as the **permutation pattern poset**. A downset of this poset is called a **permutation class**.

Definition

The set of permutations **avoiding** a specified pattern (or set of patterns) σ is denoted Av(σ).

```
Av(132) and Av(123)
```

```
Av(132) and Av(123)
```



```
Av(132) and Av(123)
```



```
Av(132) and Av(123)
```



```
Av(132) and Av(123)
```


Question

 $\mathsf{Av}(132) \mapsto \mathsf{Av}(123)$

Av(123)

Theorem Av(132) is in bijection with Av(123).

Patterns

Patterns

Patterns

Patterns

Patterns

Pattern Occurrences

Patterns

The number of occurrences of σ in π is denoted by $\nu_{\sigma}(\pi)$.

Patterns as Random Variables

Theorem (Bóna 2007)

For a randomly selected permutation of length *n*, the random variables v_{σ} are asymptotically normal as *n* approaches infinity.

Theorem (Bóna 2007)

For a randomly selected permutation of length n, the random variables ν_{σ} are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns σ and ρ , the random variables ν_{σ} and ν_{ρ} are asymptotically jointly normally distributed as $n \to \infty$.

Random Permutations

Random Permutations

Random Permutations

Random Restricted Permutations

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n)=\frac{n!}{k!}\binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$u_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Equipopularity

Definition

The **popularity** of a pattern σ in a class *C* is the sequence

$$\nu_{\sigma}(C_1)$$
, $\nu_{\sigma}(C_2)$, $\nu_{\sigma}(C_3)$, $\nu_{\sigma}(C_4)$,

Definition

Patterns are said to be **equipopular** if they have the same number of occurrences (within a specified set or across two different sets).

Equipopularity — Warm up

Fact

For a class C and a pattern σ , we have

$$\nu_{\sigma}(C_n) = |\{(\pi; \sigma^*) : \pi \in C_n, \ \sigma^* \prec \pi\}|.$$

Equipopularity — Warm up

Fact

For a class *C* and a pattern σ , we have

$$\nu_{\sigma}(C_n) = |\{(\pi; \sigma^*) : \pi \in C_n, \ \sigma^* \prec \pi\}|.$$

Proposition

In the class Av(132), σ and σ^{-1} are equipopular.

Proof.

$$(\pi, \sigma) \mapsto (\pi^{-1}, \sigma^{-1}).$$

Theorem (Bóna 2010) Within the class Av(132):

 $\nu_{123} < \nu_{213} = \nu_{231} = \nu_{312} < \nu_{321}.$

Theorem (Bóna 2010) Within the class Av(132):

 $\nu_{123} < \nu_{213} = \nu_{231} = \nu_{312} < \nu_{321}.$

Theorem (H 2012)

$$\nu_{231}(Av \, 132) = \nu_{231}(Av \, 123).$$

Theorem (Bóna 2010) Within the class Av(132):

 $\nu_{123} < \nu_{213} = \nu_{231} = \nu_{312} < \nu_{321}.$

Theorem (H 2012)

$$\nu_{231}({\rm Av}\,132) \ = \ \nu_{231}({\rm Av}\,123).$$

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Bóna 2010) Within the class Av(132):

 $\nu_{123} < \nu_{213} = \nu_{231} = \nu_{312} < \nu_{321}.$

Theorem (H 2012)

$$\nu_{231}(Av \, 132) = \nu_{231}(Av \, 123).$$

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Chua, Sankar 2013)

If two patterns are equipopular in $\mathsf{Av}(132),$ then they have the same structure.

History (in Pictures)

Definition

The separable permutations are those which avoid the patterns 2413 and 3142.

Definition

The separable permutations are those which avoid the patterns 2413 and 3142.

Alternate Definition

The separable permutations are those which can be constructed via arbitrary **skew** and **direct sums** of the permutation 1.

Definition

Given two permutations π and σ , their **direct sum** $(\pi \oplus \sigma)$ and **skew sum** $(\pi \oplus \sigma)$ are defined as follows:

$$\pi = 215643798 = (1 \ominus 1) \oplus ((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus (1 \ominus 1).$$

$\pi = 215643798 = \left(1 \ominus 1\right) \oplus \left((1 \oplus 1) \ominus 1 \ominus 1\right) \oplus 1 \oplus \left(1 \ominus 1\right).$

$\pi = \texttt{215643798} = \Bigl(1 \ominus 1\Bigr) \oplus \Bigl((1 \oplus 1) \ominus 1 \ominus 1\Bigr) \oplus 1 \oplus \Bigl(1 \ominus 1\Bigr).$

$\pi = \texttt{215643798} = \Bigl(1 \ominus 1\Bigr) \oplus \Bigl((1 \oplus 1) \ominus 1 \ominus 1\Bigr) \oplus 1 \oplus \Bigl(1 \ominus 1\Bigr).$

$\pi = \texttt{215643798} = \Bigl(1 \ominus 1\Bigr) \oplus \Bigl((1 \oplus 1) \ominus 1 \ominus 1\Bigr) \oplus 1 \oplus \Bigl(1 \ominus 1\Bigr).$

$\pi = 215643798 = \left(1 \ominus 1\right) \oplus \left((1 \oplus 1) \ominus 1 \ominus 1\right) \oplus 1 \oplus \left(1 \ominus 1\right).$

$\pi = \texttt{215643798} = \Bigl(1 \ominus 1\Bigr) \oplus \Bigl((1 \oplus 1) \ominus 1 \ominus 1\Bigr) \oplus 1 \oplus \Bigl(1 \ominus 1\Bigr).$

 \oplus

$$\pi = 215643798 = (1 \ominus 1) \oplus ((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus (1 \ominus 1).$$

$$\pi = 215643798 = \Big(1 \ominus 1\Big) \oplus \Big((1 \oplus 1) \ominus 1 \ominus 1\Big) \oplus 1 \oplus \Big(1 \ominus 1\Big).$$

$$\pi = 215643798 = (1 \ominus 1) \oplus ((1 \oplus 1) \ominus 1 \ominus 1) \oplus 1 \oplus (1 \ominus 1).$$

Popularity of Separable Permutations — A Classification Theorem
Theorem (Albert, H, Pantone)

Two patterns are equipopular in the separables if and only if they **have the same structure**. Further, the equipopularity classes are in bijection with the set of integer partitions.

Popularity in the Separables

of occurrences

Popularity in the Separables

Corollary

The number of distinct levels in these histograms is equal to the number of integer partitions.

Tree Patterns

Proof Idea Equipopularity can be characterized by tree structure.

Tree Patterns

Proof Idea Equipopularity can be characterized by tree structure.

Pattern Containment:

Strategy

Part 1

Find the operations on trees which preserve popularity.

Part 2

Show that equipopularity implies that their trees are related by one of these operations.

Lemma

The following operations preserve popularity:

- $\blacktriangleright Swapping \oplus and \ominus signs$
- Rearranging the children of any node
- Tree rotation

Canonical Representatives

$$\lambda := \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$$

Canonical Representatives

The Other Direction

Lemma

Different partitions lead to different enumerations.

Idea 1:

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea 1:

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

 Recursively build a bivariate popularity generating function for all monotone patterns.

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.

Idea 2:

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage/Maple/Mathematica/Singular tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.
- Use the orthogonality of these polynomials to uniquely factor any product.

Corollary

Length *n* canonical representative \leftrightarrow partition of the integer n-1.

Corollary

(We also have a process for building generating functions and calculating asymptotics for each of these popularities)

Open Questions/Directions

- Are there other instances of non-trivial equipopularity within other permutation classes?
- Are there other instances of equipopularity across different permutation classes?
- Are there non-trivial examples of equidistribution of pattern occurrences within or across permutation classes?
- Miner and Pak recently introduced the notion of the asymptotic shape of permutation classes, and calculated some examples. How can we similarly characterize arbitrary classes?
- Bassino, Bouvel, Féray, Gerin, and Pierrot recently calculated the distribution of separable patterns by expressing the class as a "Brownian separable permuton." Is this possible for other classes?

Thank You!