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Background:

e In my day job, I've needed normal (Gaussian) deviates in Monte Carlo simulations:

— neutral transport in plasmas for fusion (1990—-2000);
— protein-ligand binding for drug discovery (2000—2004).

e However, for nearly all scientific applications “exactness” is not required,
only “accuracy”; on the other hand ...

— this algorithm is much faster than “standard” methods at arbitrary precision;
— exactness is a requirement in some applications.



Defining exact
Two inexact methods of sampling with probability 1 /7:

Throw a 1” needle onto 2” floor boards
e (Buffon, 1733). Does the needle cross a
crack? ~

N

e Select a uniform random number U € (0,1); test U < 0.31830988618379067 ~ 1/m.

These are inexact because

e it involves physical (and therefore inexact) measurements;

e it involves floating point arithmetic (also inexact).

An exact method takes a sequence of tosses of a fair coin and succeeds with a probability
of precisely 1/=. I'll give a method which only involves counting at the end of this talk.



The normal distribution

The normal distribution is the familiar “bell-shaped” curve that models many natural phe-
nomena: Brownian motion, 1Q, hat sizes, etc. There are several well-known methods for
sampling from ¢(x). These are only accurate “to round-off”.

We want an algorithm which behaves as though it were doing the following:

e take as input uniformly distributed random bits (0 and 1);
e sample a real number (with infinite precision) from the normal distribution;

e round this to the closest double precision float and return the result.

Thus the probability that 0.75 is returned should be exactly
%+2—54
/ o(x) dx.
%_2—54

It’'s not obvious that any such (simple) algorithm exists.



von Neumann’s algorithm for the exponential distribution

A hint that there is such a solution comes from von Neumann’s algorithm for the expo-
nential distribution. This distribution models the distance a neutron travels until a fission
event, the time between clicks on a Geiger counter, etc.

exp(—x)

The standard algorithm for sampling from this distribution is to sample U < (0,1) and
return x = —logU. But ‘it seems objectionable to compute the transcendental function
of a random number” (von Neumann, 1949). His algorithm is:

1. Set k + 0.

2. Select a uniform sample = € (0, 1).

3. Similarly select uniform samples Uy, Us, ..., U, ; determine the largest n such that
x>U >Us>...>U,.

4. If n is even, return k + x; otherwise, set k < k£ + 1 and go back to step 2.



von Neumann’s algorithm (cont.)
Probability of x > U; > Us > ... > U, (given z):

e The probability that all U; < x for i € [1,n] is z".
e The probability that they are in the decreasing order is 1/n!.

e The probability that the ordering holds for n but not for n+ 1 (i.e., that the sequence
of n is the longest) is 2™ /n! — 21 /(n + 1)\.

e Finally, the probability that n is even is

2 3 4 5

1 r_7 _

If implemented with floating point arithmetic, this approximately realizes the exponential
distribution and various authors (Forsythe, 1972; ...) have generalized the algorithm
assuming the use of floating point arithmetic.

Knuth and Yao (1976) realized that it could be adapted to sample exactly from the expo-
nential distribution because the only operation carried out on real numbers are compar-
isons and 0.31... > 0.37... can be determined by only looking at a few initial digits of the
numbers. The final result of the algorithm, k£ + z, is a number, e.g., 1.34. .., where some
digits have been determined and the rest (denoted by ...) can be filled in with sufficient
random digits to allow the result to be accurately rounded to arbitrary precision.



von Neumann’s algorithm (cont.)
Remarks from von Neumann’s paper:

e This method “resembles a well known game of chance— Twenty-one, or Black Jack.”
Imagine a continuous version of Black Jack played with cards drawn from (0, 1) with
“oust” defined as the total value in excess of x. For z < 1, the probability of not going
bust after n cards is ™ /n!; the probability of going bust with an odd number of cards
is exp(—x); the mean number of cards to go bust is exp(z). This was presumably a
piece of trivia shared during card games in Los Alamos.

e ‘It is a sad fact of life, however, that under the particular conditions of the Eniac it
was slightly quicker to use a truncated power series for log U than to carry out all
the discriminations.” von Neumann used the Eniac for Monte Carlo calculations in
support of the H bomb work at Los Alamos. More on the timing later.

e “The machine has in effect computed a logarithm by performing only discriminations
on the relative magnitude of numbers in (0, 1).” Remarkably, the algorithm sums an
infinite Taylor series with a finite mean running time.

von Neumann’s last statement is the most tantalizing: could a similar technique be ap-
plied to other distributions (in particular, the normal distribution)?

The algorithm must be such that the only operation performed on real numbers is = < y.



Algorithm N, sampling from the normal distribution

| posed this as a challenge to the mailing list for MPFR (a library for arbitrary precision
floating point arithmetic) in January 2010. | found the solution given here in January
2012.

Here is the outline of the algorithm:

1. Select integer k& > 0 with probability proportional to exp(—3k).

2. Accept k with probability exp(—5k(k — 1)). The probability density of k is now
17,2
exp(—zk=).
3. Select a uniform sample x € (0, 1).
4. Accept z with probability exp(—3z(2k + x)). The probability density of [k, z] is now
exp(—3(k + x)?).

5. Return +(k + x) with equal probability. The probability density of the result is now
normal.

Steps 1 and 2 can be expressed in terms of Bernoulli trials with probability exp(—%); this

can be implemented with von Neumann’s method by setting = = 1.



Algorithm N (cont.)
The challenge is Step 4; transform this to

e Repeat £ + 1 times:

e Generate two sequences of uniform samples Uy, Us, ..., U, and Vi, V5, ..
determine the largest n such that

1. 2 >U; > Uy > ... > U, (this is the von Neumann test) and
2. V; < 2k +2x)/(2k +2) forall i € [1,n].
e If n is odd, start again at the beginning of the algorithm.
Condition 1 is satisfied with probability 2" /n!;

condition 2 is satisfied with probability ((2k + z)/(2k +2))".
Thus the probability that »n is even is

s Vij
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The probability that n is even for all £ + 1 iterations is exp(—5z(2k + x)).

The iterations are needed because $z(2k + x) can be greater than 1. Dividing by & + 1 fixes this.
Need to go down another rabbit hole to implement condition 2 without doing any real arithmetic!

See paper for details.



Properties of the Algorithm N

Because the only operations on z are inequalities, the final normal sample +(k + z)
has only a small number of digits in the fraction filled in—a form of /azy evaluation. For
example, with base b = 10, let the random digits be

9148686 | 685171 ...

The algorithm completes after reading 7 digits to produce +1.6... (i.e., only one digit of
the fraction has been determined. Now random digits can be copied directly to the result
to give +1.6685171.... Correctly rounded normal deviates in base 10 can be generated
(and, as a bonus, you know in which direction the exact sample was rounded).

With b = 2 (input is random bits), the algorithm completes after consuming 30.0 bits on
average and the mean number of bits in the fraction of the result is 1.6.

Define the “toll”, T', of the algorithm as the difference between the number of bits con-
sumed and the entropy (in bits) of the resulting samples.

e normal sampling: T' ~ 26.4;
e exponential sampling (von Neumann): T' =~ 5.8;

e exponential sampling (von Neumann with early rejection): T ~ 4.0.



Properties of the Algorithm N (cont.)
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The decomposition of the normal distribution into uniform distributions.
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Speed of the Algorithm N (base b = 232)

type IEEE MPFR
method polar Algorithm N polar
precision (bits) A B C D
24 0.034 0.30 0.59 2.3
32 0.64 2.4
53 0.054 0.31 0.64 2.6
64 0.057 0.37 0.64 2.8
128 0.65 3.8
256 0.68 6.2
210 0.86 20
212 1.6 130
214 4.3 1300
216 15 13000
218 59 120000
220 240 910000

Times are averages per normal deviate in us. “Polar’ is a standard method for sam-
pling from the normal distribution. Columns A and B use IEEE floating point arithmetic.
Columns C and D use the MPFR functions mpfr_nrandom (coming soon! in MPFR 4.0)
and mpfr_grandom.

The average running time in Column C is offset linear in the desired precision;
it is among the fastest functions in MPFR.
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Sampling from the discrete normal distribution

Can adapt Algorithm N to sample from the discrete normal distribution,

ot o) e[ ()]

provided that the parameters 1 and o are rational.

Major application is cryptography, e.g., “learning with errors” (Regev, 2009).

In order to obtain perfect scaling, required number of bits proportional log, o for
o > 1, it's necessary to modify the integer sampling of Lumbroso (2013) to return
a partially sampled resuli—another example of lazy evaluation.

This algorithm contradicts an assertion made in a review by Dwarakanath and Gal-
braith (2014): “sampling algorithms require either high precision floating point arith-
metic or very large precomputed tables”.

At about 100 lines of code, the algorithm is suitable for “constrained hardware”
(simple integer arithmetic, limited power, limited memory). Potential issues:

— unbounded time (and memory);
— may subject to “side-channel” attacks.
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The digital method of sampling with probability 1/
This algorithm is due to Flajolet et al. (2011):

e Perform three coin tossing experiments in which you toss a coin until you get tails,
e.g., HHHHT; HHHT; HHT. Let hy = 4, ho = 3, hg = 2 be the numbers of heads
tossed in each experiment.

o Compute n = |h1/2] + |he/2| + mod(|(hs — 1)/3],2) = 2+ 1 + 0 = 3. Probability
of nis (6n + 1)/4"*1. Mean value of n is 1.

e Perform three additional coin tossing experiments in which you toss a coin 2n = 6
times, e.g., TTHHTH; HHTHH|H; THHHHH. Are the number of heads and tails
equal in each experiment? yes A no A no — no. (Here, you should give up at the ||.)
Probability of success for each experiment is

2n i
n ) 4n
Working out the probability of success gives

X 6n+1[/2n\ 11° 1 7/1\° 13/1-3\° 19/1-3-5\° 1
> —| =—|1+-(z) + 55— ) +3 tol== O
Ant+1 |\ p ) 4n 4 4\ 2 122\ 9.4 13\2.4.6 -

n=0

See Ramanujan (1914), Eq. (28). Average number of coin tosses per result is 9.6.
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