
Open Problems and Directions in the
Analysis of Partial Match

Amalia Duch, Gustavo Lau and Conrado Martı́nez

Department of Computer Science
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

AofA 2017
Princeton, USA



Introduction

I Our history of PM queries over hierarchical
multidimensional data structures (DS) starts in 1974 with
Finkel’s PhD dissertation and the introduction of quadtrees
by Bentley and Finkel.

R. A. Finkel J. L. Bentley

I In 1975 Bentley introduced the K-d trees.

Expected cost PM ∼ βn1−s/K



Introduction

I The seminal paper on the study of the expected cost of PM
queries started in 1986 with the seminal paper of Flajolet
and Puech in K-d trees and K-d tries.

Ph. Flajolet C. Puech

Expected cost PM ∼ βn1−s/K+θ(s/K) = βnα



PM queries: values, patterns and ranks

Given a file F ⊂ D0 × · · · × DK−1:

A partial match query q is given by q = (q0, . . . , qK−1) with
qi ∈ Di ∪ {∗}. The coordinates qi 6= ∗ are called specified,
otherwise they are called unspecified. Assumption: the
number s of specified coordinates satisfies 0 < s < K.

The query pattern u(q) = (u0, . . . , uK−1) of q is such that
ui = S if qi 6= ∗ and ui = ∗ otherwise.

The rank vector q is the vector r(F,q) = r(q) = (r0, . . . , rK−1)
where ri = ∗ when qi = ∗ and ri is the number of records x in F
such that xi ≤ qi when qi 6= ∗.



PM query example

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb

q

K = 2, n = 14
Query: q = (∗, 16.2), Pattern: u = (∗, S), Rank: r = (∗, 12)



Example: K-d tree and induced partition

A

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



Example: K-d tree and induced partition

A

B

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb



Example: K-d tree and induced partition

A

B

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

BB(B)



Example: K-d tree and induced partition

A

B

C

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb



Example: K-d tree and induced partition

D

A

B

E

G

H

C F

J

I

N

K

L

M

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb



Example: K-d tree and induced partition

D

A

B

E

G

H

C F

J

I

N

K

L

M

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb

BB(N)



PM algorithm

procedure PARTIALMATCH(q, T )
if T = � then return
x← key of the root of T
if x matches q then

Report x
i← discriminant coordinate of the root of T
if qi = ∗ then

PARTIALMATCH(q, left subtree of T )
PARTIALMATCH(q, right subtree of T )

else
if qi ≤ xi then

PARTIALMATCH(q, left subtree of T )
else

PARTIALMATCH(q, right subtree of T )



Example: PM query in a K-d tree

D

A

B

E

G

H

C F

J

I

N

K

L

M

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb

q



Example: PM query in a K-d tree

D

A

B

E

G

H

C F

J

I

N

K

L

M

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb

q



Example: PM query in a K-d tree

D

A

B

E

G

H

C F

J

I

N

K

L

M

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb

q



Cost of the PM algorithm
I The cost of the PM algorithm is measured as the number

of visited nodes in the corresponding tree.
I If r(q) = r(q′) then cost of q = cost of q′.

Ab

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Bb

Cb

Db

Eb

Fb

Gb

Hb

Ib

Jb

Kb

Lb

Mb

Nb
q



Cost of the PM algorithm

The actual values xi of the coordinates of the points in F are
not relevant for the cost, only their relative ranks.

The cost depends on:
I The kind of hierarchical data structure under consideration.
I The probabilistic model from which data points are

generated.



Probabilistic model: random data structures

Assumption:

The hierarchical multidimensional DS are built with the same
probability from any of the n!K possible input sequences.



The cost of PM queries

In previous literature two different random variables have been
analyzed:
I The cost of Fixed PM queries (Pn,r)
I The cost of the Randomized PM algorithm (P ′n,u)

We can also consider two different random variables:
I The cost of Random PM queries (P̂n,u)
I The cumulative cost of Fixed PM queries (P̃n,u)

E{P ′n,u} = E{P̂n,u} = E{P̃n,u}/(n+ 1)s



Random PM queries

Given a pattern u, we define:

Rn,u =
{
r = (r0, ..., rK−1)

∣∣∣ri = ∗ if ui = ∗

and 0 ≤ ri ≤ n if ui = S
}

then the random variable that represents the cost of a random
PM query is P̂n,u := Pn,R, where R is taken uniformly at
random among the (n+ 1)s elements of Rn,u.

Higher order moments of P̂n,u can be easily obtained from the
higher order moments of Pn,r.



Cumulative PM queries

The cumulative PM query is the sum of the fixed PM queries:

P̃n,u =
∑

r∈Rn,u

Pn,r

Higher order moments of P̃n,u would not be easy to obtain
since one should know the co-variances of Pn,r and Pn,r′ .



Randomized PM algorithm

procedure RANDPARTIALMATCH(u, T )
if T = � then return
x← key of the root of T
i← discriminant coordinate of the root of T
if ui = ∗ then

RANDPARTIALMATCH(u, left subtree of T )
RANDPARTIALMATCH(u, right subtree of T )

else
{ BB(x)= [a0, b0]× · · · × [aK−1, bK−1] }
Generate a value qi v Uniform (ai, bi).
if qi ≤ xi then

RANDPARTIALMATCH(u, left subtree of T )
else

RANDPARTIALMATCH(u, right subtree of T )



Randomized PM queries

P ′n,u = P ′n, the cost of the randomized PM query, follows the
distributional equation:

P ′n = 1+1S(1V≤UP(1)
U +1V>UP(2)

n−1−U )+(1−1S)(P(3)
U +P(4)

n−1−U )(∗)

where:
I S follows a Bernoulli distribution with p = s/K (indicates if

the root discriminates by a specified coordinate), and
I U is Discrete Uniform (0, n− 1) (standing for the size of the

left subtree),
I V is Discrete Uniform (0, n) (marking whether the PM

algorithm follows the left or the right subtrees),
I P(1),P(2),P(3),P(4) are independent copies of P ′.
I S,U ,V and P ′,P(1),P(2),P(3),P(4) are independent.



Some Previous Work

I Since the mid-80s there have been a substantial number of
papers around the analysis of PM queries in many different
multidimensional DS, e.g.,
Flajolet and Puech (1986), Cunto, L. and Flajolet (1989),
Flajolet, Gonnet, Puech and Robson (1993), Flajo-
let, Labelle, Laforest and Salvy (1995), Labelle and
Laforest (1995), W. Schachinger (1995, 2000, 2004),
Duch, Estivill-Castro and Martı́nez (1998), Devroye,
Jabbour and Zamora-Cura (2000), Neininger (2000),
Martinez, Panholzer and Prodinger (2001), Neininger
and Rüschendorf (2001), Chern and Hwang (2003,
2006), . . .

I Most of these papers study the expected cost of random
PM queries (actually, the expected cost of
RANDPARTIALMATCH), some consider the variance and
distribution of the cost of RANDPARTIALMATCH.



Some Previous Work
I In the last few years, we have made considerable progress

in the analysis of the cost of fixed PM queries Pn,r. From
there it is inmediate to derive results for P̂n,u, the cost of a
random PM query with pattern u:
Curien and Joseph (2011), Duch, Jiménez and Martı́nez (2012),
Broutin, Neininger and Sulzbach (2013), Duch, Martı́nez and L.
(2016), . . .

I In particular, for n→∞, and x = limn→∞
1
nr, such that

0 < xi < 1 for all xi 6= ∗, we have

Pn,r
βnα

D−→h(x)P̂, (∗)

with

h(x) = κ ·

 ∏
i:xi 6=∗

xi(1− xi)

α/2

and
P̂n,u
βnα

D−→P̂.



Some Previous Work

I This has been shown for 2-d quadtrees, standard K-d
trees, and relaxed K-d trees.

I In (Duch, Martinez, L., 2016) we conjectured that this was
true for other DS when α > 1− s/K.

I A similar result should hold for relaxed K-dt trees (a locally
balanced variant of relaxed K-d trees), but we have proved
that in this case

h(x) 6= κ ·

 ∏
i:xi 6=∗

xi(1− xi)

α/2

(Duch and L., 2017).



Some Open Problems & Future Directions

I We are still interested in deriving “specific” results
(distribution, expected value, other moments, . . . ) for
particular DS, e.g., for the expected cost of a random PM
query in relaxed K-dt trees we have the exponent
α = α(s,K, t), but no closed formula is yet known for
β = β(s,K, t).

I Another example is finding h(x) for standard and relaxed
K-dt trees , we have the linear ODE satisfied by h, for any
t, but we’ve been unable to explicitly solve it, even for
special cases, e.g., t = 1.

I We would like to have suitable “combinatorial” descriptions
of several multidimensional DS, e.g., squarish K-d trees,
median K-d trees, and then find closed formulas for β
(random PM) or h(x) (fixed PM).



Some Open Problems & Future Directions

I However our focus is in finding general results that apply in
a wide variety of multidimensional DS, rather than finding
specific results.

I We would like to provide general conditions under which

Pn,r
βnα

D−→h(x)P̂, n→∞,

holds; on the other hand, preliminary results and
experiments suggest that if α = 1− s/K (e.g., squarish
K-d trees, K-d tries, . . . ) then we have

Pn,r
βnα

D−→P̂, n→∞,

with P̂ the limit distribution of the cost of random PM. Can
we prove this without going on a case-by-case basis??



Some Open Problems & Future Directions

I Quad-Kd trees generalize several families of
multidimensional DS, for instance all variants of K-d trees
and quadtrees are particular instances.

I We have results on the expected cost of random PM for a
large subclass of quad-Kd trees (Duch, L. and Martinez,
2016) which allow us to study, for instance, how α changes
as we turn the “knob” from p = 0 (relaxed K-d trees) to
p = 1 (quadtrees).

I We would be interested extending the subclass of
quad-Kd trees on which our results apply and derive more
results about the cost of PM queries on these trees, going
beyond the expected cost of random PM queries.



This is the end, thank you very much for your attention!


