NON-ASYMPTOTIC APPROXIMATION of Markov Chain Functionals in Transient Regimes

Manuel E. Lladser University of Colorado - Boulder

In collaboration with J. Barrera

AofA 2017

M.E. Lladser Non-asymptotic Approximation of Markovian Functionals

- S: finite but possibly very large state space
- $X \sim Markov(\mu, p)$ i.e. a first-order homogeneous Markov chain:
 - μ : initial distribution
 - *p* : probability transition matrix

Problem.

Approximate the distribution of functionals of the form:

$$F_n := \sum_{t=1}^n f(t, X_t)$$

when *n* is too large for exact calculations ¹ and too small to rely on the Normal ² or the Poisson approximation ³

¹Durrett'99, Flajolet-Sedgewick'09

²Bender-Kochman'93, Régnier-Szpankowski'98, Nicodème-Salvy-Flajolet'02

³Aldous'88, Barbour-Holst-Janson'92, Erhardsson'99, Roquain-Schbath'07

Problem Setting and Statement. (Talk Simplification!)

- S: finite but possibly very large state space
- $X \sim Markov(\mu, p)$ i.e. a first order homogeneous Markov chain:
 - μ : initial distribution
 - *p* : probability transition matrix

Problem.

Approximate the distribution of functionals of the form:

$$T_n := \sum_{t=1}^n \llbracket X_t \in T \rrbracket \quad \text{(sojourn-time of a set } T\text{)}$$

when *n* is too large for exact calculations 1 and too small to rely on the Normal 2 or the Poisson approximation 3

¹Durrett'99, Flajolet-Sedgewick'09

²Bender-Kochman'93, Régnier-Szpankowski'98, Nicodème-Salvy-Flajolet'02

³Aldous'88, Barbour-Holst-Janson'92, Erhardsson'99, Roquain-Schbath'07

- **Symbolic Method:** *z* marks *#* of visits to *T*
- **Transfer Matrix** ¹: $p_z(i,j) := p(i,j) \cdot z^{[j \in T]}$
- Moment Generating Function ²: $\mathbb{E}(z^{T_n}) = \mu \cdot p_z^n \cdot \mathbf{1}$

Computational Bottleneck.

Each of the |S| entries of $\mu \cdot p_z^n$ may be a polynomial of degree up to n

Goal.

Approximate (in **total variation** distance) the distribution of T_n assuming p_z^{ℓ} , for certain $\ell > 0$, is the largest power of p_z that can be computed explicitly.

¹Flajolet-Sedgewick'09
²Nicodème-Salvy-Flajolet'99, Ll.-Betterton-Knight'08

Doeblin's ergodicity coefficient ¹:

$$\begin{aligned} \alpha(p) &:= \sum_{j} \min_{i} p(i,j) \\ &\stackrel{2}{=} \max \left\{ \alpha \geq 0 \text{ s.t. } (\exists \text{ prob. } e) \, (\forall i,j \in S): \, p(i,j) \geq \alpha \cdot e(j) \right\} \end{aligned}$$

Remark. Think of *e* as a stochastic matrix with identical rows

Theorem.²

For all $0 \le \alpha \le \alpha(p)$ there is a prob. *e* and stoch. matrix *r* such that

$$p = \alpha \cdot e + (1 - \alpha) \cdot r$$

If $\alpha = \alpha(p) > 0$ then

$$e(j) = \min_{i} \frac{p(i,j)}{\alpha(p)}$$

¹Doeblin'37 ²Chestnut-LL'10

Approximation based on Doeblin's coefficient: Toy Example.

$$p := \begin{bmatrix} .3 & .4 & .3 \\ .1 & .2 & .7 \\ .5 & 0 & .5 \end{bmatrix} \quad \text{i.e.} \quad \alpha(p) = .1 + 0 + .3 = .4$$
$$= \begin{bmatrix} .1 & 0 & .3 \\ .1 & 0 & .3 \\ .1 & 0 & .3 \end{bmatrix} + \begin{bmatrix} .2 & .4 & 0 \\ 0 & .2 & .4 \\ .4 & 0 & .2 \end{bmatrix}$$
$$= 0.4 \cdot \begin{bmatrix} .25 & 0 & .75 \\ .25 & 0 & .75 \\ .25 & 0 & .75 \end{bmatrix} + 0.6 \cdot \begin{bmatrix} .\overline{3} & .\overline{6} & 0 \\ 0 & .\overline{3} & .\overline{6} \\ .\overline{6} & 0 & .\overline{3} \end{bmatrix}$$

Simulation of the Markov chain.

- 40% of the time jump using *e* i.e. regardless of the current state (!)
- 60% of the time jump using *r*

M.E. Lladser Non-asymptotic Approximation of Markovian Functionals

Computational Implication

Figure. Conditional on when e and r are used, the sojourn-time of T may be decomposed as a sum of independent random variables i.e.e acts as a memory breaker for the chain

Longest Head-run in Coin Flips ¹

In *n* transitions, the longest run of *r*'s concentrates around $\log_{\frac{1}{1}}(\alpha n)$

¹Feller'68, Arratia-Goldstein-Gordon'90

M.E. Lladser

Non-asymptotic Approximation of Markovian Functionals

Theorem.¹

Assume $\alpha = \alpha(p) > 0$

If $T_{m,n}$ is the sojourn-time of T in n transitions when we condition the longest run of r to be at most $\ell \sim c \cdot \log_{\frac{1}{1-\alpha}}(n\alpha)$, then $\|T_n - T_{\ell,n}\| = O(n^{1-c})$

Further, the moment generating function of $T_{\ell,n}$ satisfies an explicitly linear recursion of order $(\ell + 1)$

¹Chestnut-Ll.'10, Ll.-Chestnut'14

WORK IN PROGRESS

(Contact speaker if you would like the complete set of slides!)

M.E. Lladser Non-asymptotic Approximation of Markovian Functionals