

0. Motivation and Outline

Motivation:

- ▶ in this talk: precisely enumerate large classes of graphs
- we combine in novel way:
 - classical characterization of graphs by tree-decompositions—because trees are easier to count
 - "graph labeled tree" framework (Gioan and Paul, 2012)
 - techniques in analytic combinatorics (symbolic method + asymptotic theorems)
 - technique from species theory (dissymetry theorem on trees)
- obtain exact and asymptotic enumerations + more

Outline:

- present definitions (graph decomposition, split decomposition, symbolic method)
- illustrate our approach for a simpler class of graphs (3-leaf power graphs)
- results for distance-hereditary graphs
- perspectives

context: some direct predecessors of our method

this work is informed by a long line of research on graph decomposition (see Gioan and Paul especially), but two prior works are particular relevant:

- Thimonier and Ravelomanana 2002: asymptotic enumeration of cographs (totally decomposable graphs for modular decomposition) using analytic combinatorics techniques
- Nakano et al. 2007: encoding and upper-bound for enumeration of distance-hereditary graphs (totally decomposable graphs for split decomposition) using algorithmic construction
- Gioan and Paul, 2009-2012: introduced the notion of graph-labeled tree and way to characterize split-decomposition output

context: distance-hereditary graphs (1)

goal: develop general methods cover vast subsets of perfect graphs¹

starting point distance-hereditary graphs: [all as of Jan. 16th]

Google	"distance-hereditary graphs" - Q	
Scholar	About 1,370 results (0.04 sec)	
Articles	[нтмс] Distance-hereditary graphs HJ Bandelt. HM Mulder - Journal of Combinatorial Theory. Series B. 1986 - Elsevier	
Case law	Abstract Distance-hereditary graphs (sensu Howorka) are connected graphs in which all	
My library	induced paths are isometric. Examples of such graphs are provided by complete multipartite graphs and ptolemaic graphs. Every finite distance-hereditary graph is obtained from K 1 by Cited by 385 Related articles All 8 versions Cite Save	
Any time	ICITATION A characterization of distance-hereditary graphs	
Since 2017	E Howorka - The quarterly journal of mathematics, 1977 - Oxford Univ Press	
Since 2016	THE graphs considered are undirected, without loops or multiple edges. The distance da (u,	
Since 2013	v) between two vertices u, v of a connected graph G is the length of a shortest uv path of G.(V (G) do) is the matrix space associated with G. The present note deals with graphs whose	
Custom range	Cited by 250 Related articles All 2 versions Cite Save	

- planar graphs: 44 500 results
- interval graphs: 11600 results |
 - [imperfect: incl. in perf. gr.]
- perfect graphs: 9 990 result
- chordal graphs: 8 860 results
- series-parallel graphs: 4 720 results
- cographs: 2690 results
- block graphs: 1940 results

¹chromatic number of every induced subgraph = size of max-clique of subgraph

context: distance-hereditary graphs (2)

- ▶ **1977, Howorka:** defines DH graphs (respect isometric distance: all induced paths between two vertices are same length)
- 1982, Cunningham: introduces split-decomposition (as "join decomposition")
- ▶ 1986, Bandelt and Mulder: vertex-incremental characterization
- ► **1990, Hammer and Maffray:** DH graphs are totally decomposable by the split-decomposition
- > 2003, Spinrad: upper-bound of enumeration sequence $2^{O(n \log n)}$
- ▶ 2009, Nakano *et al.*: upper-bound of 2^[3.59n] (approx. within factor 2)
- 2014-16, Chauve, Fusy, L.: exact enumeration + full asymptotic (= constant, polynomial and exp. terms)

1. Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T, \mathcal{F}) , with T a tree and \mathcal{F} a set of graphs such that:

- ▶ a node *v* of degree *k* of *T* is labeled by graph $G_v \in \mathcal{F}$ on *k* vertices;
- ► there is a bijection \(\rho_v\) from the tree-edges incident to \(v\) to the vertices of \(G_v\).

1. Graph decompositions

Def: a graph-labeled tree (GLT) is a pair (T, \mathcal{F}) , with T a tree and \mathcal{F} a set of graphs such that:

- ▶ a node *v* of degree *k* of *T* is labeled by graph $G_v \in \mathcal{F}$ on *k* vertices;
- ► there is a bijection \(\rho_v\) from the tree-edges incident to \(v\) to the vertices of \(G_v\).

Def: a *rooted graph-labeled tree* is a graph-labeled tree of which one internal node is distinguished.

Remark: several types of decompositions of graphs (modular, split...); each decomposition has **totally decomposition graphs** for which the decomposition does not contain internal prime graphs.

split decomposition (1)

Def: a bipartition (A, B) of a the vertices of a graph is a *split* iff

- $\blacktriangleright |A| \ge 2, |B| \ge 2;$
- ▶ for $x \in A$ and $y \in B$, $xy \in E$ iff $x \in N(B)$ and $y \in N(A)$.

split decomposition (2)

Remark:

- distance-hereditary graphs: graphs that are totally decomposable by split decomposition: internal nodes are star-nodes or clique-nodes;
- ► 3-leaf power graphs: subset of distance-hereditary graphs, with additional constraint that star nodes form connected subtree.

2. Specifiable Combinatorial Classes

a class $\boldsymbol{\mathcal{A}}$ is a specifiable combinatorial class if:

described by symbolic rules (= grammar)

Z, ε +, ×, Seq, Set, Cyc, ...
 building blocks ways to combine them
 possible recursive (defined using itself)

the number a_n of objects of size n is finite

Example: class $\mathcal B$ of binary trees specified by

$$\mathcal{B} = \boldsymbol{\varepsilon} + \mathcal{B} \times \boldsymbol{\mathfrak{Z}} \times \mathcal{B}$$

all binary trees of size 3 (with 3 internal nodes \bullet):

symbolic method [Flajolet & Sedgewick 09]

the generating function A(z) of class A encodes, within a function, the complete enumeration (the number of objects for each size) of the class:

$$A(z)=\sum_{n=0}^{\infty}a_nz^n$$

 in the general case, this generating function (GF) is a formal object; however the GF of decomposable classes is often convergent

dictionary: correspondence which exactly relates specific. and GF

construction	specification	GF	
neutral element	ε	1	
atome	Z	Z	Analytic
union	$\mathcal{A} + \mathcal{B}$	A(z) + B(z)	Combinatorics
Cartesian product	$\mathcal{A}\times \mathcal{B}$	$A(z) \cdot B(z)$	Philippe Flajolet and Robert Sodgewick
sequence	$Seq(\mathcal{A})$	$\frac{1}{1-A(z)}$	
			Y

example: class \mathcal{B} of binary trees

$$\mathcal{B} = \varepsilon + \mathcal{B} \times \mathcal{Z} \times \mathcal{B} \quad \Rightarrow \quad B(z) = 1 + B(z) \cdot z \cdot B(z) = \frac{1 - \sqrt{1 - 4z}}{2}$$
10/28

3. 3-LEAF POWER graphs

(One Possible) Def: a connected graph is a 3-leaf power graphs (3LP) iff it results from a tree by replacing every vertex by a clique of arbitrary size.

Algorithmic Characterization: 3LP graphs are obtained from a single vertex by

- first iterating arbitrary additions of pendant vertex;
- then iterating arbitrary additions of true twins.

(This caracterization is especially useful when establishing a reference, brute-force enumeration of these graphs!)

the first few 3-leaf power graphs

if these graphs were to be constructed by incremental construction, the **blue vertex** represents the vertex added from a smaller graph

obtaining rooted grammar of 3LP

Split-tree characterization of 3LP graphs (Gioan & Paul 2009):

- 1. its split tree ST(G) has only of clique-nodes and star-nodes;
- 2. the set of star-nodes forms a connected subtree of ST(G);
- 3. the center of a star-node is incident either to a leaf or a clique-node.

Thm (Chauve et al.) From this, we describe rooted tree decomposition, by walking through the tree

$$\begin{aligned} 3\mathcal{L}\mathcal{P}_{\bullet} &= \mathcal{L}_{\bullet} \times (\mathbb{S}_{C} + \mathbb{S}_{X}) + \mathbb{C}_{\bullet} & \qquad & \mathbb{S}_{C} = \operatorname{Set}_{\geq 2} (\mathcal{L} + \mathbb{S}_{X}) \\ \mathbb{S}_{X} &= \mathcal{L} \times \operatorname{Set}_{\geq 1} (\mathcal{L} + \mathbb{S}_{X}) & \qquad & \mathcal{L} = \mathbb{Z} + \operatorname{Set}_{\geq 2} (\mathbb{Z}) \\ \mathbb{L}_{\bullet} &= \mathbb{Z}_{\bullet} + \mathbb{Z}_{\bullet} \times \operatorname{Set}_{\geq 1} (\mathbb{Z}) & \qquad & \mathbb{C}_{\bullet} = \mathbb{Z}_{\bullet} \times \operatorname{Set}_{\geq 2} (\mathbb{Z}) \end{aligned}$$

where

- S_C are star-nodes entered through their center; S_X , their extremities;
- \mathcal{A}_{\bullet} is a class where one vertex is distinguished;
- \mathcal{L} are leaves (either cliques or single vertices) and \mathcal{C} (clique).

from rooted to **unrooted**: dissymetry theorem for trees

- the grammars obtained describe a class of rooted trees; so the identical graphs are counted several times
- we need a tool to transform these grammars into grammars for the equivalent unrooted class;
- one such tool, the Dissymetry Theorem for Trees [Bergeron et al. 98] states

with

- ► A, unrooted class (which we are looking for)
- ▶ A_o, class rooted **node** (which we have)
- A_{◦-◦} and A_{◦→◦}, class respectively rooted in undirected edge and directed edge (easy to obtain from A_◦)
- alternate tool: cycle pointing, Bodirsky et al. 2011 (more difficult but preserves combinatorial grammar)

unrooted grammar — just for your information

- ▶ from dissymetry theorem, we deduce A = A₀ + A₀₋₀ A_{0→0} for the purposes of enumeration
- thus the unrooted 3LP graphs are described by

$$\begin{split} & 3\mathcal{L}\mathcal{P} = \mathcal{C} + \mathcal{T}_{S} + \mathcal{T}_{S-S} - \mathcal{T}_{S \to S} \\ & \mathcal{T}_{S} = \mathcal{L} \times \mathcal{S}_{C} \\ & \mathcal{T}_{S-S} = \mathsf{Set}_{2} \left(\mathcal{S}_{X} \right) \\ & \mathcal{T}_{S \to S} = \mathcal{S}_{X} \times \mathcal{S}_{X} \\ & \mathcal{S}_{C} = \mathsf{Set}_{\geqslant 2} \left(\mathcal{L} + \mathcal{S}_{X} \right) \\ & \mathcal{S}_{X} = \mathcal{L} \times \mathsf{Set}_{\geqslant 1} \left(\mathcal{L} + \mathcal{S}_{X} \right) \\ & \mathcal{L} = \mathcal{Z} + \mathsf{Set}_{\geqslant 2} \left(\mathcal{Z} \right) \\ & \mathcal{C} = \mathsf{Set}_{\geqslant 3} \left(\mathcal{Z} \right). \end{split}$$

remark:

- original terms: S_C , S_X , \mathcal{L} , \mathcal{C}
- ▶ terms from the dissymetry theorem: T_S , T_{S-S} , $T_{S\rightarrow S}$
- main term in the form of $\mathcal{A} = \mathcal{A}_{\circ} + \mathcal{A}_{\circ-\circ} \mathcal{A}_{\circ\rightarrow\circ}$

experimental enumerations for graphs of size up to 10000 (1)

- t_n : # of unlabeled and unrooted 3LP graphs of size n
- we know that $t_n = O(\alpha^n)$, want to find α
- here, plot of $\log_2(t_n/t_{n-1})$
- suggests growths of $\alpha = 2^{1.943...}$ for 3-Leaf Power Graphs

experimental enumerations for graphs of size up to 10000 (2)

Maple code to obtain previous plot, which allows to conjecture the asymptotic enumeration, once a grammar for the trees is found.

```
with(combstruct): with(plots):
TLP_UNROOTED_PARTS := {
  z = Atom.
  G_SUPERSET = Union(C, Union(TS, TSSu)),
  TS
          = Prod(L, SC),
  TSSu = Set(SX, card=2),
 TSSd = Prod(SX, SX),
 SC = Set(Union(L, SX), card >= 2),
 SX = Prod(L, Set(Union(L, SX), card >= 1)),
 L
        = Union(z, Set(z, card >= 2)),
 С
            = Set(z, card >= 3)
1:
N := 10000:
OGF_TLP_SUPERSET := add(count([G_SUPERSET, TLP_UNROOTED_PARTS, unlabeled],
                             size = n) * x^n, n = 1 .. N):
OGF_TLP_TSSd := add(count([TSSd, TLP_UNROOTED_PARTS, unlabeled], size = n) *
                   x^n, n = 1 .. N:
OGF_TLP := OGF_TLP_SUPERSET - OGF_TLP_TSSd:
TLP_RATIOS := [seq([i, evalf(log(coeff(OGF_TLP, x, i)/coeff(OGF_TLP, x, i-1)))
                            /log(2)], i = 10 ... N)]:
plot(TLP_LOGS);
```

asymptotic enumeration: theory

- the asymptotics of a algebraic grammar (described only with + and ×, not sets) is well-known under theorem of Drmota-Lalley-Woods
- usually extends with no problem to other operations, under some niceness hypotheses [for ex., Chapuy et al. 08]

Method (without correctness proof):

1. let combinatorial system $\ensuremath{\mathbb{S}}$

$$\$ \begin{cases} \mathfrak{X}_1 = \Phi_1(\mathfrak{X}_1, \dots, \mathfrak{X}_m) \\ \vdots \vdots & \vdots \\ \mathfrak{X}_m = \Phi_m(\mathfrak{X}_1, \dots, \mathfrak{X}_m) \end{cases}$$

2. translate to equations on generating functions

with additional equation for recursion well-foundness

$$0 = \det(\operatorname{Jacobian}(S))$$

3. solve numerically

asymptotic enumeration: practice

Practical tweaks:

- our grammars involve unlabeled set operations, which result in infinite Polya series: these must be truncated
- additionally, singularity (= inverse of exponential growth) of rooted and unrooted classes is same: so work on (simpler) rooted grammar

Result: implemented algorithm in Maple, to obtain asymptotic of graph-decomposition with **arbitrary precision**:

```
TLP_ROOTED := {
    Gp = Union(Prod(Lp, Union(SC, SX)), Cp),
    SC = Set(Union(L, SX), card >= 2),
    SX = Prod(L, Set(Union(L, SX), card >= 1)),
    Cp = Prod(v, Set(v, card >= 2)), v = Atom, # [... snipped ...]
}:
fsolve_combsys(TLP_ROOTED, 100, z);
    Eq1 = 0.02370404136, Eq2 = 0.5329652240, Eq3 = 0.3510690027,
    Eq4 = 0.3510690027, Eq5 = 0.8016703909, Eq6 = 0.6489309973,
    Eq7 = 0.2598453536, z = 0.2598453536
```

asymptotic exponential growth = 1/z

summary of 3LP and DH enumerations

We have used the example of 3-Leaf Power Graphs, because it is simpler to present, but all results obtained for Distance-Hereditary graphs.

Exact and asymptotic results for two major classes, previously unknown.

3-Leaf Power Graphs:

- exact enumeration: 1, 1, 2, 5, 12, 32, 82, 227, 629, 1840, 5456, 16701, 51939, 164688, ... (calculated linearly as function of size n)
- ► asymptotics: $c \cdot 3.848442876...^n \cdot n^{-5/2}$ with $c \approx 0.70955825396...$ (bound: $2^{1.9442748333}$)

Distance-Hereditary Graphs:

- exact enumeration: 1, 1, 2, 6, 18, 73, 308, 1484, 7492, 40010, 220676, 1253940, ... (calculated linearly as function of size n)
- ► asymptotics: $c \cdot 7.249751250...^n \cdot n^{-5/2}$ with $c \approx 0.02337516194...$ (bound: $2^{2.857931495}$)

Split-Tree Examples (1)

Split-Tree Examples (2)

Split-Tree Examples (2)

C4 as a subgraph

THM (Bahrani, L.). In a clique-star split-decomposition tree:

=> forbidding that two star nodes be connected by their center => restricting split-decomposition tree to only use star and clique nodes

result: grammar + enumerations in labeled and unlabeled cases

	Rooted	Labeled	EIS	Enumeration
Ptolemaic graphs	1	1		1, 2, 12, 140, 2405, 54252, 1512539, 50168456, 1928240622, 84240029730, 4121792058791, 223248397559376,
Ptolemaic graphs		1		1, 1, 4, 35, 481, 9042, 216077, 6271057, 214248958, 8424002973, 374708368981, 18604033129948, 1019915376831963,
Ptolemaic graphs	√			1, 1, 3, 10, 40, 168, 764, 3589, 17460, 86858, 440507, 2267491, 11819232, 62250491, 330794053, 1771283115, 9547905381,
Ptolemaic graphs				1, 1, 2, 5, 14, 47, 170, 676, 2834, 12471, 56675, 264906, 1264851, 6150187, 30357300, 151798497, 767573729, 3919462385,

Family Characterization	Split-Decomposition Tree Characterization	
Distance hereditary with no induced ${\cal C}_4$	Clique-star tree with no center-center paths (<i>i.e.</i> paths connected the centers of two star nodes).	

Rooted Grammar	Unrooted Grammar
$\mathcal{P}\mathcal{G} = \mathcal{I} \times (\mathcal{S}_{\mathcal{O}} + \mathcal{S}_{\mathcal{V}} + \mathcal{K})$	$\mathfrak{P}\mathfrak{G}=\mathfrak{T}_K+\mathfrak{T}_S+\mathfrak{T}_{S-S}-\mathfrak{T}_{S\rightarrow S}-\mathfrak{T}_{S-K}$
$S_{\alpha} = S_{\alpha} \times (S_{\alpha} + S_{\alpha} + S_{\alpha})$	$T_K = S_C \times SET_{\geq 2} (Z + S_X) + SET_{\geq 3} (Z + S_X)$
$S_{U} = S_{U} \left[\frac{1}{2} \left(x + x + b_{X} \right) \right]$	$T_S = S_C \times (Z + \overline{X})$
$\delta_X = (\lambda + \lambda) \times \operatorname{SEI}_{\geq 1} (\lambda + \lambda + \delta_X)$	$T_{S-S} = SET_2(S_X)$
$\mathcal{K} = \mathcal{O}_C \times \operatorname{SEI}_{\geq 1} \left(\mathcal{L} + \mathcal{O}_X \right) + \operatorname{SEI}_{\geq 2} \left(\mathcal{L} + \mathcal{O}_X \right)$	$T_{S \rightarrow S} = S_X \times S_X$
$\mathcal{K} = \operatorname{Set}_{\geq 2} (\mathcal{L} + \mathcal{S}_X)$	$\mathfrak{T}_{S-K}=\mathfrak{K}\times \mathbb{S}_X+\overline{\mathfrak{K}}\times \mathbb{S}_C$

Table 2. Characterization, grammar, and the first few terms of the enumeration of ptolemaic graphs.

Images by Alex Iriza, obtained by Boltzmann generator using cycle pointing. Implementation on GitHub. 27/28

5. Perspectives and upcoming results

Analyses:

- Parameter analysis: analyzing, either theoretically or experimentally (already possible using random generation) various parameters of these graphs; such as distribution of star-nodes, clique-nodes, etc.
- Other classes: extending methodology to non-totally decomposable classes of graphs—either for modular decomposition or split decomposition (challenge is characterizing prime graphs in grammars).
 - bounds on parity graphs with bipartite prime [Shi, 2016 + ongoing]
 - forbidden subgraph characterizations [Bahrani and L., 2016]
 - cactus graphs [Bahrani and L., 2017]

Applications:

- Encoding: asymptotic result suggests more efficient encoding than the one provided by Nakano *et al.* 2007 (which uses 2⁴ⁿ bits)?
 - automatic bounds given any vertex-incremental characterization [Shi, 2016]
- Random generation: efficient random generation already possible using cycle pointing [Fusy et al. 2007] [Iriza et al. 2015].