Entropy of Some Advanced Data Structures

Wojciech Szpankowski
Purdue University
W. Lafayette, IN 47907

June 12, 2017

AofA, Princeton, 2017
*Joint work with Y. Choi, Z. Golebiewski, S. Janson, T. Luczak, A. Magner, and K. Turowski.

Outline

1. Multimodal and Multi-context Data Structures
2. Entropy of Binary Trees

- Motivation
- Plane vs Non-Plane Trees
- Entropy Computation

3. Entropy of General d-ary Trees

- m-ary Search Trees
- d-ary Trees
- General Trees

4. Entropy of Graphs

- Structural Entropy - Unlabeled Graphs
- Erdős-Renyí Graphs
- Preferential Attachment Graphs

Multimodal Data Structures

Figure 1: Protein-Protein Interaction Network with BioGRID database

Outline Update

1. Multimodal and Multi-context Data Structures
2. Entropy of Binary Trees

- Motivation
- Plane vs Non-Plane Trees
- Entropy Computation

3. Entropy of General d-ary Trees
4. Entropy of Graphs

Source models for trees

Probabilistic models for rooted binary plane trees:
Random binary trees on n leaves:

- At time $t=0$: Add a node.
- At time $t=1, \ldots, n$: Choose a leaf uniformly at random and attach 2 children.

Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

- At time $t=0$: Add a node.
- At time $t=1, \ldots, n$: Choose a leaf uniformly at random and attach 2 children.

Equivalent formulation (binary search tree):

- Initially, add a node with label n.
- While there is a leaf with label $\ell>1$, choose a number ℓ^{\prime} uniformly at random from $[\ell-1]$ and add a left and right child with labels with ℓ^{\prime} and $\ell-\ell^{\prime}$, respectively.

4

Source Models for Non-Plane Trees

Non-plane trees: Ordering of siblings doesn'† matter. Formally, a non-plane tree is an equivalence class of trees, where two trees are equivalent if one can be converted to the other by a sequence of rotations.

Example of two equivalent trees:

Source models for vertex names

Parameters for vertex names:
\mathcal{A} : The (finite) alphabet.
$m \geq 0$: the length of a name.
P : Markov transition matrix
π : stationary distribution associated with P.

Generating vertex names given a tree structure:

- Generate a name for the root by taking m letters from a memoryless source with distribution π on \mathcal{A}.
- Given a name $a_{1} a_{2}, \ldots, a_{m}$ for an internal node, generate names for its two children $b_{1}, \ldots b_{m}$ and $b_{1}^{\prime}, \ldots, b_{m}^{\prime}$ such that the j th letter, $j=1, \ldots, m$, of each child, is generated according to the distribution $P\left(b_{j} \mid a_{j}\right)$.
- $L T_{n}$: a binary plane tree on n leaves with vertex names.

Source models for vertex names

Parameters for vertex names:
\mathcal{A} : The (finite) alphabet.
$m \geq 0$: the length of a name.
P : Markov transition matrix
π : stationary distribution associated with P.

Generating vertex names given a tree structure:

- Generate a name for the root by taking m letters from a memoryless source with distribution π on \mathcal{A}.
- Given a name $a_{1} a_{2}, \ldots, a_{m}$ for an internal node, generate names for its two children $b_{1}, \ldots b_{m}$ and $b_{1}^{\prime}, \ldots, b_{m}^{\prime}$ such that the j th letter, $j=1, \ldots, m$, of each child, is generated according to the distribution $P\left(b_{j} \mid a_{j}\right)$.
- $L T_{n}$: a binary plane tree on n leaves with vertex names.

Tree Entropy:

$$
H\left(T_{n}\right)=-\mathbf{E}\left[\log P\left(T_{n}\right)\right]=-\sum_{t_{n} \in T_{n}} P\left(T_{n}=t_{n}\right) \log P\left(T_{n}=t_{n}\right)
$$

Entropy for Plane-Oriented Trees with Names

Theorem 1 (Magner, W.S., Turowski, 2016). The entropy of a plane tree with names, generated according to the model with fixed length m, is given by

$$
\begin{aligned}
H\left(L T_{n}\right)= & \log _{2}(n-1)+2 n \sum_{k=2}^{n-1} \frac{\log _{2}(k-1)}{k(k+1)}+2(n-1) m h(P)+m h(\pi) \\
& =n \cdot\left(2 \sum_{k=2}^{n-1} \frac{\log _{2}(k-1)}{k(k+1)}+2 m h(P)\right)+O(\log n) .
\end{aligned}
$$

where $h(\pi)=-\sum_{a \in \mathcal{A}} \pi(a) \log \pi(a)$.

- $\log _{2}(n-1)$: The choice of the number of leaves in the left subtree of the root.
- $2 n \sum_{k=2}^{n-1} \frac{\log _{2}(k-1)}{k(k+1)}$: The accumulated choices of the number of leaves in left subtrees.
- $2(n-1) m h(P)$: The choices of vertex names given those of their parents.
- $m h(\pi)$: The choice of the vertex name for the root.

See also Kieffer, Yang, W.S., ISIT 2009.

Sketch of Proof

Observe that

$$
H\left(L T_{n} \mid F_{n}(r)\right)=\log _{2}(n-1)+2 m h(P)+\frac{2}{n-1} \sum_{k=1}^{n-1} H\left(L T_{k} \mid F_{k}(r)\right)
$$

and $H\left(L T_{n}\right)=H\left(L T_{n} \mid F_{n}(r)\right)+H\left(F_{n}(r)\right)$, where $F_{n}(r)$ is the name assigned to the root r.

Sketch of Proof

Observe that

$$
H\left(L T_{n} \mid F_{n}(r)\right)=\log _{2}(n-1)+2 m h(P)+\frac{2}{n-1} \sum_{k=1}^{n-1} H\left(L T_{k} \mid F_{k}(r)\right)
$$

and $H\left(L T_{n}\right)=H\left(L T_{n} \mid F_{n}(r)\right)+H\left(F_{n}(r)\right)$, where $F_{n}(r)$ is the name assigned to the root r.

The above recurrence has a simple solution as shown in the lemma below.
Lemma 1. The recurrence $x_{1}=0$,

$$
x_{n}=a_{n}+\frac{2}{n-1} \sum_{k=1}^{n-1} x_{k}, \quad n \geq 2
$$

has the following solution for $n \geq 2$:

$$
x_{n}=a_{n}+n \sum_{k=2}^{n-1} \frac{2 a_{k}}{k(k+1)} .
$$

Entropy for Non-plane Trees

Entropy for non-plane trees is more difficult: let S_{n} denote a random nonplane tree on n leaves according to our model.
Theorem 2 (Magner, Turowski, W.S., 2016). Entropy rate for non-plane trees is

$$
H\left(S_{n}\right)=(h(t)-h(t \mid s)) \cdot n+o(n) \approx 1.109 n
$$

where

$$
h(t)=2 \sum_{k=1}^{\infty} \frac{\log _{2} k}{(k+1)(k+2)}, \quad h(t \mid s)=1-\sum_{k=1}^{\infty} \frac{b_{k}}{(2 k-1) k(2 k+1)},
$$

and (the coincidence probability)

$$
b_{k}=\sum_{t_{k} \in \mathcal{T}_{k}}\left(\operatorname{Pr}\left[T_{k}=t_{k}\right]\right)^{2} .
$$

Remark: It turns out that b_{n} satisfies for $n \geq 2$ the following recurrence

$$
b_{n}=\frac{1}{(n-1)^{2}} \sum_{j=1}^{n-1} b_{j} b_{n-j}
$$

with $b_{1}=1$ (see Hwang, Martinez, et al., 2012).
Remark. The sequence b_{k} is related to the Rényi entropy of order 1 of T_{k}.

Sketch of Proof

1. Observe that $H\left(T_{n}\right)-H\left(S_{n}\right)=H\left(T_{n} \mid S_{n}\right)$.

Sketch of Proof

1. Observe that $H\left(T_{n}\right)-H\left(S_{n}\right)=H\left(T_{n} \mid S_{n}\right)$.
2. For $s \in \mathcal{S}$ and $t \in \mathcal{T}: t \sim s$ means the plane tree t is isomorphic to s.

We write: $\quad[s]=\{t \in \mathcal{T}: t \sim s\}$.
3. We have

$$
\operatorname{Pr}\left(S_{n}=s\right)=|[s]| \operatorname{Pr}\left(T_{n}=t\right), \quad \operatorname{Pr}\left(T_{n}=t \mid S_{n}=s\right)=1 /|[s]| .
$$

4. $X(t)$: number of internal vertices of t with unbalanced subtrees;
$Y(t)$: number of internal vertices with balanced, non isomorphic subtrees.
Since $|[s]|=2^{X(s)+Y(s)}$, thus
$H\left(T_{n} \mid S_{n}\right)=-\sum_{t \in \mathcal{T}_{n}, s \in \mathcal{S}_{n}} \operatorname{Pr}\left(T_{n}=t, S_{n}=s\right) \log \operatorname{Pr}\left(T_{n}=t \mid S_{n}=s\right)=\mathbf{E} X_{n}+\mathbf{E} Y_{n}$
5. Let $Z(t)$ be number of internal vertices of t with isomorphic subtrees. Obviously, $X(t)+Y(t)+Z(t)=n-1$. Let $Z_{n}(t)=\sum_{\mathfrak{s}} Z_{n}(\mathfrak{s})$. Then
$\mathbf{E} Z_{n}(\mathfrak{s})=\mathbf{E} I\left(T_{n} \sim \mathfrak{s} * \mathfrak{s}\right)+\frac{2}{n-1} \sum_{k=1}^{n-1} \mathbf{E} Z_{k}(\mathfrak{s})$
where
$\mathbf{E} I\left(T_{n} \sim \mathfrak{s} * \mathfrak{s}\right)=I(n=2 \Delta(\mathfrak{s})) \frac{\operatorname{Pr}^{2}\left(T_{n / 2} \sim \mathfrak{s}\right)}{n-1}$.

Outline Update

1. Multimodal and Multi-context Data Structures
2. Entropy of Binary Trees
3. Entropy of General d-ary Trees

- m-ary Search Trees
- d-ary Trees
- General Trees

4. Entropy of Graphs

Generalized Trees

Let T_{n} represent a random tree t_{n} on n internal nodes. No correlated names.

General Probabilistic Model:

Tree t_{n} is split into d subtrees of size k_{1}, \ldots, k_{d} where

Then we assume that

$$
P\left(T_{n}=t_{n}\right)=P\left(k_{1}, \ldots, k_{d}\right) \prod_{i=1}^{d} P\left(T_{k_{i}}=t_{k_{i}}\right)
$$

where the split probability $P\left(k_{1}, \ldots, k_{d}\right)$ is the probability of the split at the root of sizes $k_{1}, \ldots k_{d}$, respectively.

This split probability $P\left(k_{1}, \ldots, k_{d}\right)$ is different for variety d-ary trees.

m-ary Search Trees

Figure 2: 3 -ary search tree built over ($4,7,3,5,1,2,9,6,8$).

m-ary Search Trees

(4,7,3,5,1,2,9,6,8)

Figure 2: 3-ary search tree built over ($4,7,3,5,1,2,9,6,8$). Theorem 3 (Fill, Hwang, et al., 2005). For m-ary search tree, the entropy $H_{n}^{(m)}$ is

$$
H_{n}^{(m)}=n \cdot \frac{2}{2 \mathcal{H}_{m}-2} \sum_{k \geq 0} \frac{\log \binom{k}{m-1}}{(k+1)(k+2)}+o(n)
$$

where $\mathcal{H}_{m}=\sum_{i=1}^{m} \frac{1}{i}$ is the harmonic number.

Generating d-ary Trees: 3-ary Example

Figure 3: Labeled and unlabeled 3-ary trees of size 4.

General Plane Trees

Figure 4: Labeled and unlabeled general trees of size 5 .

Entropy of d-ary Trees

Let W_{n} denote d-ary trees with n internal nodes.

Entropy Recurrence:

We write $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right)$. Then

$$
H\left(W_{n}\right)=H(P(\mathbf{k}))+d \sum_{k=0}^{n-1} p_{n, k} H\left(W_{k}\right)
$$

where $P(\mathbf{k})$ is the split probability that can be expressed as

$$
P(\mathbf{k})=\binom{n-1}{k_{1}, \ldots, k_{d}} \frac{g_{k_{1}} \cdots g_{k_{d}}}{g_{n}}, \quad g_{n}=(-1)^{n}(d-1)^{n} \frac{\Gamma\left(2-\frac{d}{d-1}\right)}{\Gamma\left(2-\frac{d}{d-1}-n\right)} .
$$

Let $\alpha=d /(d-1)$. Then $p_{n, k}$ is the prob. of one subtree of size k :

$$
p_{n, k}=\sum_{k_{2}+\cdots k_{d}=n-k} P(\mathbf{k})=\frac{(\alpha-1)}{n} \frac{n!\Gamma(k+\alpha-1)}{k!\Gamma(n+\alpha-1)} .
$$

Entropy of d-ary Trees

Let W_{n} denote d-ary trees with n internal nodes.

Entropy Recurrence:

We write $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right)$. Then

$$
H\left(W_{n}\right)=H(P(\mathbf{k}))+d \sum_{k=0}^{n-1} p_{n, k} H\left(W_{k}\right)
$$

where $P(\mathbf{k})$ is the split probability that can be expressed as

$$
P(\mathbf{k})=\binom{n-1}{k_{1}, \ldots, k_{d}} \frac{g_{k_{1}} \cdots g_{k_{d}}}{g_{n}}, \quad g_{n}=(-1)^{n}(d-1)^{n} \frac{\Gamma\left(2-\frac{d}{d-1}\right)}{\Gamma\left(2-\frac{d}{d-1}-n\right)} .
$$

Let $\alpha=d /(d-1)$. Then $p_{n, k}$ is the prob. of one subtree of size k :

$$
p_{n, k}=\sum_{k_{2}+\cdots k_{d}=n-k} P(\mathbf{k})=\frac{(\alpha-1)}{n} \frac{n!\Gamma(k+\alpha-1)}{k!\Gamma(n+\alpha-1)} .
$$

Theorem 4 (Golebiewski, Magner, W.S., 2017). The entropy of a d-ary tree is

$$
H\left(W_{n}\right)=H(P(\mathbf{k}))+\alpha(n+\alpha-1) \sum_{k=0}^{n-1} \frac{H(P(\mathbf{k}))}{(k+\alpha-1)(k+\alpha)}
$$

where $H(P(\mathbf{k}))$ is the entropy of $P(\mathbf{k})$.

Sketch of the Proof

Apply the following lemma with $a_{n}=H(P(\mathbf{k}))$.
Lemma 2. For constant α, x_{0} and x_{1}, the recurrence

$$
x_{n}=a_{n}+\frac{\alpha}{n} \frac{n!}{\Gamma(n+\alpha-1)} \sum_{k=0}^{n-1} \frac{\Gamma(k+\alpha-1)}{k!} x_{k}, \quad n \geq 2
$$

has the following solution for $n \geq 2$:
$x_{n}=a_{n}+\alpha(n+\alpha-1) \sum_{k=0}^{n-1} \frac{a_{k}}{(k+\alpha-1)(k+\alpha)}+\frac{n+\alpha-1}{\alpha+1}\left(x_{1}+\frac{x_{0}}{\alpha-1}\right)$.

Remark. For example for $d=3$ we have

$$
H(P(\mathbf{k}))=\log \left(\frac{n}{2^{n}}\binom{2 n}{n}\right)-\frac{3}{2 n} \sum_{k=0}^{n-1} \frac{\binom{2 k}{k} 2^{2 n}}{\binom{n}{n} 2^{2 k}} \log \left(\frac{\binom{2 k}{k}}{2^{k}}\right)
$$

and $H\left(W_{n}\right) \approx n \cdot 2.470$.

Outline Update

1. Multimodal and Multi-contex Data Structures
2. Entropy of Binary Trees
3. Entropy of General d-ary Trees
4. Entropy of Graphs

- Structural Entropy - Unlabeled Graphs
- Erdős-Renyí Graphs
- Preferential Attachment Graphs

Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model \mathcal{S} of a graph \mathcal{G} is defined for an unlabeled version. Some labeled graphs have the same structure.

Graph Entropy vs Structural Entropy:
The probability of a structure S is:

$$
P(S)=N(S) \cdot P(G)
$$

where $N(S)$ is the number of different labeled graphs having the same structure (and the same probability).

$$
\begin{aligned}
H_{\mathcal{G}} & =\mathbf{E}[-\log P(G)]=-\sum_{G \in \mathcal{G}} P(G) \log P(G), \\
H_{\mathcal{S}} & =\mathbf{E}[-\log P(S)]=-\sum_{S \in \mathcal{S}} P(S) \log P(S) \quad \text { structural entropy }
\end{aligned}
$$

Relationship between $H_{\mathcal{G}}$ and $H_{\mathcal{S}}$

Two labeled graphs G_{1} and G_{2} are called isomorphic if and only if there is a one-to-one mapping from $V\left(G_{1}\right)$ onto $V\left(G_{2}\right)$ which preserves the adjacency.

Graph Automorphism: For a graph G its automorphism is adjacency preserving permutation of vertices of G (i.e., graph perspective is the same).

The collection $\operatorname{Aut}(G)$ of all automorphism of G is
 called the automorphism group of G.

Lemma 3. If all isomorphic graphs have the same probability, then

$$
H_{\mathcal{S}}=H_{\mathcal{G}}-\log n!+\sum_{S \in \mathcal{S}} P(S) \log |\operatorname{Aut}(S)|
$$

where $\operatorname{Aut}(S)$ is the automorphism group of S.
Proof idea: Using the fact that

$$
N(S)=\frac{n!}{|\operatorname{Aut}(S)|}
$$

Erdös-Rényi Graph Model and Symmetry

Our random structure model is the unlabeled version of the binomial random graph model also known as the Erdös-Rényi random graph model.

The binomial random graph $\mathcal{G}(n, p)$ generates graphs with n vertices, where edges are chosen independently with probability p.

If a graph G in $\mathcal{G}(n, p)$ has k edges, then (where $q=1-p$)

$$
P(G)=p^{k} q^{\binom{n}{2}-k}
$$

Lemma 4 (Kim, Sudakov, and Vu, 2002). For Erdös-Rényi graphs and all p satisfying

$$
\frac{\ln n}{n} \ll p, \quad 1-p \gg \frac{\ln n}{n}
$$

a random graph $G \in \mathcal{G}(n, p)$ is symmetric (i.e., $\operatorname{Aut}(G) \approx 1$) with probability $O\left(n^{-w}\right)$ for any positive constant w, that is, for $w>1$

$$
P(\operatorname{Aut}(G)=1) \sim 1-O\left(n^{-w}\right)
$$

Structural Entropy for Erdös-Rényi Graphs

Theorem 5 (Choi, W.S 2009). For large n and all p satisfying $\frac{\ln n}{n} \ll p$ and $1-p \gg \frac{\ln n}{n}$ (i.e., the graph is connected w.h.p.), for some $a>0$
$H_{\mathcal{S}}=\binom{n}{2} h(p)-\log n!+O\left(\frac{\log n}{n^{a}}\right)=\binom{n}{2} h(p)-n \log n+n \log e+O(\log n)$,
where $h(p)=-p \log p-(1-p) \log (1-p)$ is the entropy rate.
AEP for structures: $\quad 2^{-\binom{n}{2}(h(p)+\varepsilon)+\log n!} \leq P(S) \leq 2^{-\binom{n}{2}(h(p)-\varepsilon)+\log n!}$.
Proof idea:

1. $H_{\mathcal{S}}=H_{\mathcal{G}}-\log n!+\sum_{S \in \mathcal{S}} P(S) \log |\operatorname{Aut}(S)|$.
2. $H_{\mathcal{G}}=\binom{n}{2} h(p)$
3. $\sum_{S \in \mathcal{S}} P(S) \log |\operatorname{Aut}(S)|=o(1)$ by asymmetry of $\mathcal{G}(n, p)$.

Preferential Attachment Graphs

For an integer parameter m define graph $\mathcal{G}_{m}(n)$ with vertex set $[n]=$ $\{1,2, \ldots, n\} \mathrm{n}$ the following way:

1. Graph $G_{1} \sim \mathcal{G}_{m}(1)$ is a single node with label 1 with m self-edges.
2. To construct $G_{n+1} \sim \mathcal{G}_{m}(n+1)$ from G_{n} : add vertex $n+1$ and make m random choices v_{1}, \ldots, v_{m} as follows:

$$
P\left(v_{i}=w \mid G_{n}, v_{1}, \ldots, v_{i-1}\right)=\frac{\operatorname{deg}_{n}(w)}{2 m n}
$$

where $\operatorname{deg}_{n}(w)$ is the degree of vertex $w \in[n]$ in the graph G_{n}.

Preferential Attachment Graphs

For an integer parameter m define graph $\mathcal{G}_{m}(n)$ with vertex set $[n]=$ $\{1,2, \ldots, n\} n$ the following way:

1. Graph $G_{1} \sim \mathcal{G}_{m}(1)$ is a single node with label 1 with m self-edges.
2. To construct $G_{n+1} \sim \mathcal{G}_{m}(n+1)$ from G_{n} : add vertex $n+1$ and make m random choices v_{1}, \ldots, v_{m} as follows:

$$
P\left(v_{i}=w \mid G_{n}, v_{1}, \ldots, v_{i-1}\right)=\frac{\operatorname{deg}_{n}(w)}{2 m n}
$$

where $\operatorname{deg}_{n}(w)$ is the degree of vertex $w \in[n]$ in the graph G_{n}.

Symmetry and Automorphism:

Numerical defect vs graph size for the Uniform Attachment model

Figure 5: $|\operatorname{Aut}(G)|$: For $m=1$ (left), $m=4$ (middle), defect (right).

Symmetry of Preferential Attachment Graphs?

Theorem 6 (Janson, Magner, W.S., 2014). (Symmetry Results for $m=1,2$.)
Let graph G_{n} be generated by the preferential model with parameter $m=1$ or $m=2$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\operatorname{Aut}\left(G_{n}\right)\right|>1\right]>C \\
& \text { for some } C>0
\end{aligned}
$$

That is, for $m=1,2$ there are some symmetric subgraphs.
Conjecture For $m \geq 3$ a graph G_{n} generated by the preferential model is asymmetric whp, that is

$$
\operatorname{Pr}\left[\left|\operatorname{Aut}\left(G_{n}\right)\right|>1\right] \rightarrow 0\left[O\left(n^{-\varepsilon}\right)\right],
$$

that is, for $m \geq 3$ the graph is asymmetric whp.

Symmetry of Preferential Attachment Graphs?

Theorem 7 (Janson, Magner, W.S., 2014). (Symmetry Results for $m=1,2$.)
Let graph G_{n} be generated by the preferential model with parameter $m=1$ or $m=2$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\operatorname{Aut}\left(G_{n}\right)\right|>1\right]>C \\
& \text { for some } C>0
\end{aligned}
$$

That is, for $m=1,2$ there are some symmetric subgraphs.
Theorem (Luczak, Magner, W.S., 2016) For $m \geq 3$ a graph G_{n} generated by the preferential model is asymmetric whp, that is

$$
\operatorname{Pr}\left[\left|\operatorname{Aut}\left(G_{n}\right)\right|>1\right] \rightarrow 0\left[O\left(n^{-\varepsilon}\right)\right],
$$

that is, for $m \geq 3$ the graph is asymmetric whp.

Entropy of Preferential Attachment Graphs

Theorem 8 (Luczak, Magner. W.S., 2017). (Entropy of preferential attachment graphs) Consider $G \sim \mathcal{G}_{m}(n)$ for fixed $m \geq 1$. We have

$$
H(G)=m n \log n+m n(\log 2 m-1-\log m!-A)+o(n),
$$

where

$$
A=\sum_{d=1}^{\infty} \frac{\log d}{(d+1)(d+2)} \approx 0.868
$$

Theorem 9 (Luczak, Magner, W.S., 2017). (Structural entropy of preferential attachment graphs) Let $m \geq 3$ be fixed. Consider $G \sim \mathcal{G}_{m}(n)$. We have

$$
H(S(G))=(m-1) n \log n+R(n),
$$

where $R(n)$ satisfies

$$
\left((m+1)\left(\frac{\log 2 m}{2}-A\right)+1\right) n \leq R(n) \leq O(n \log \log n)
$$

Remark: Design efficient compression algorithms for labeled and unlabeled Preferential Attachment Graphs matching the above entropy.

That's It

THANK YOU

