
1



Entropy of Some Advanced Data Structures

Wojciech Szpankowski

Purdue University

W. Lafayette, IN 47907

June 12, 2017

AofA, Princeton, 2017

∗Joint work with Y. Choi, Z. Golebiewski, S. Janson, T. Luczak, A. Magner, and K. Turowski.



Outline

1. Multimodal and Multi-context Data Structures

2. Entropy of Binary Trees

• Motivation

• Plane vs Non-Plane Trees

• Entropy Computation

3. Entropy of General d-ary Trees

• m-ary Search Trees

• d-ary Trees

• General Trees

4. Entropy of Graphs

• Structural Entropy – Unlabeled Graphs
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Multimodal Data Structures

Figure 1: Protein-Protein Interaction Network with BioGRID database
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Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

• At time t = 0: Add a node.

• At time t = 1, ..., n: Choose a leaf uniformly at random and attach 2
children.



Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

• At time t = 0: Add a node.

• At time t = 1, ..., n: Choose a leaf uniformly at random and attach 2
children.

Equivalent formulation (binary search tree):

• Initially, add a node with label n.

• While there is a leaf with label ℓ > 1, choose a number ℓ′ uniformly at

random from [ℓ− 1] and add a left and right child with labels with ℓ′ and

ℓ − ℓ′, respectively.
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Source Models for Non-Plane Trees

Non-plane trees: Ordering of siblings doesn’t matter. Formally, a non-plane

tree is an equivalence class of trees, where two trees are equivalent if one

can be converted to the other by a sequence of rotations.

Example of two equivalent trees:



Source models for vertex names

Parameters for vertex names:

A: The (finite) alphabet.

m ≥ 0: the length of a name.

P : Markov transition matrix

π: stationary distribution associated with P .

Generating vertex names given a tree structure:

• Generate a name for the root by taking m letters from a memoryless

source with distribution π on A.

• Given a name a1a2, . . . , am for an internal node, generate names

for its two children b1, . . . bm and b′1, . . . , b
′
m such that the jth letter,

j = 1, ...,m, of each child, is generated according to the distribution

P (bj|aj).

• LTn: a binary plane tree on n leaves with vertex names.



Source models for vertex names

Parameters for vertex names:

A: The (finite) alphabet.

m ≥ 0: the length of a name.

P : Markov transition matrix

π: stationary distribution associated with P .

Generating vertex names given a tree structure:

• Generate a name for the root by taking m letters from a memoryless

source with distribution π on A.

• Given a name a1a2, . . . , am for an internal node, generate names

for its two children b1, . . . bm and b′1, . . . , b
′
m such that the jth letter,

j = 1, ...,m, of each child, is generated according to the distribution

P (bj|aj).

• LTn: a binary plane tree on n leaves with vertex names.

Tree Entropy:

H(Tn) = −E[logP (Tn)] = −
∑

tn∈Tn

P (Tn = tn) logP (Tn = tn).



Entropy for Plane-Oriented Trees with Names

Theorem 1 (Magner, W.S., Turowski, 2016). The entropy of a plane tree with

names, generated according to the model with fixed length m, is given by

H(LTn) = log2(n − 1) + 2n

n−1
∑

k=2

log2(k − 1)

k(k + 1)
+ 2(n − 1)mh(P ) + mh(π)

= n ·

(

2
n−1
∑

k=2

log2(k − 1)

k(k + 1)
+ 2mh(P )

)

+ O(log n).

where h(π) = −
∑

a∈A

π(a) log π(a).

• log2(n− 1): The choice of the number of leaves in the left subtree of the

root.

• 2n
n−1
∑

k=2

log2(k−1)

k(k+1) : The accumulated choices of the number of leaves in left

subtrees.

• 2(n−1)mh(P ): The choices of vertex names given those of their parents.

• mh(π): The choice of the vertex name for the root.

See also Kieffer, Yang, W.S., ISIT 2009.



Sketch of Proof

Observe that

H(LTn|Fn(r)) = log2(n − 1) + 2mh(P ) +
2

n − 1

n−1
∑

k=1

H(LTk|Fk(r))

and H(LTn) = H(LTn|Fn(r)) + H(Fn(r)), where Fn(r) is the name

assigned to the root r.



Sketch of Proof

Observe that

H(LTn|Fn(r)) = log2(n − 1) + 2mh(P ) +
2

n − 1

n−1
∑

k=1

H(LTk|Fk(r))

and H(LTn) = H(LTn|Fn(r)) + H(Fn(r)), where Fn(r) is the name

assigned to the root r.

The above recurrence has a simple solution as shown in the lemma below.

Lemma 1. The recurrence x1 = 0,

xn = an +
2

n − 1

n−1
∑

k=1

xk, n ≥ 2

has the following solution for n ≥ 2:

xn = an + n
n−1
∑

k=2

2ak

k(k + 1)
.



Entropy for Non-plane Trees

Entropy for non-plane trees is more difficult: let Sn denote a random non-

plane tree on n leaves according to our model.

Theorem 2 (Magner, Turowski, W.S., 2016). Entropy rate for non-plane trees is

H(Sn) = (h(t) − h(t|s)) · n + o(n) ≈ 1.109n

where

h(t) = 2
∞
∑

k=1

log2 k

(k + 1)(k + 2)
, h(t|s) = 1 −

∞
∑

k=1

bk

(2k − 1)k(2k + 1)
,

and (the coincidence probability)

bk =
∑

tk∈Tk

(Pr[Tk = tk])
2
.

Remark: It turns out that bn satisfies for n ≥ 2 the following recurrence

bn =
1

(n − 1)2

n−1
∑

j=1

bjbn−j

with b1 = 1 (see Hwang, Martinez, et al., 2012).

Remark. The sequence bk is related to the Rényi entropy of order 1 of Tk.



Sketch of Proof

1. Observe that H(Tn) − H(Sn) = H(Tn|Sn).



Sketch of Proof

1. Observe that H(Tn) − H(Sn) = H(Tn|Sn).

2. For s ∈ S and t ∈ T : t ∼ s means the plane tree t is isomorphic to s.

We write: [s] = {t ∈ T : t ∼ s}.
3. We have

Pr(Sn = s) = |[s]|Pr(Tn = t), Pr(Tn = t|Sn = s) = 1/|[s]|.

4. X(t): number of internal vertices of t with unbalanced subtrees;

Y (t): number of internal vertices with balanced, non isomorphic subtrees.

Since |[s]| = 2X(s)+Y (s), thus

H(Tn|Sn) = −
∑

t∈Tn,s∈Sn

Pr(Tn = t, Sn = s) log Pr(Tn = t|Sn = s) = EXn + EYn

5. Let Z(t) be number of internal vertices of t with isomorphic subtrees.

Obviously, X(t) + Y (t) + Z(t) = n − 1. Let Zn(t) =
∑

s
Zn(s). Then

EZn(s) = EI (Tn ∼ s ∗ s) + 2
n−1

n−1
∑

k=1

EZk(s)

where

EI (Tn ∼ s ∗ s) = I (n = 2∆(s))
Pr2(Tn/2∼s)

n−1 .
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Generalized Trees

Let Tn represent a random tree tn on n internal nodes.

No correlated names.

General Probabilistic Model:
Tree tn is split into d subtrees of size k1, . . . , kd where

k1 + · · · + kd = n − 1.

Then we assume that

P (Tn = tn) = P (k1, . . . , kd)

d
∏

i=1

P
(

Tki
= tki

)

where the split probability P (k1, . . . , kd) is the probability of the split at the

root of sizes k1, . . . kd, respectively.

This split probability P (k1, . . . , kd) is different for variety d-ary trees.



m-ary Search Trees

(4,7,3,5,1,2,9,6,8)

4,7

1,3

2

5,6 8,9

Figure 2: 3-ary search tree built over (4, 7, 3, 5, 1, 2, 9, 6, 8).



m-ary Search Trees

(4,7,3,5,1,2,9,6,8)

4,7

1,3

2

5,6 8,9

Figure 2: 3-ary search tree built over (4, 7, 3, 5, 1, 2, 9, 6, 8).

Theorem 3 (Fill, Hwang, et al., 2005). For m-ary search tree, the entropy H(m)
n

is

H(m)
n = n ·

2

2Hm − 2

∑

k≥0

log
( k
m−1

)

(k + 1)(k + 2)
+ o(n)

where Hm =
∑m

i=1
1
i is the harmonic number.



Generating d-ary Trees: 3-ary Example

(a) (b)

1

(c)

1
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(d)

1

2

3

(e)
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4

(f)

Figure 3: Labeled and unlabeled 3-ary trees of size 4.



General Plane Trees
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Figure 4: Labeled and unlabeled general trees of size 5.



Entropy of d-ary Trees

Let Wn denote d-ary trees with n internal nodes.

Entropy Recurrence:

We write k = (k1, . . . , kd). Then

H(Wn) = H(P (k)) + d

n−1
∑

k=0

pn,kH(Wk)

where P (k) is the split probability that can be expressed as

P (k) =
( n − 1

k1, . . . , kd

)gk1 · · · gkd
gn

, gn = (−1)
n
(d − 1)

n Γ(2 − d
d−1)

Γ(2 − d
d−1 − n)

.

Let α = d/(d − 1). Then pn,k is the prob. of one subtree of size k:

pn,k =
∑

k2+···kd=n−k

P (k) =
(α − 1)

n

n!Γ(k + α − 1)

k!Γ(n + α − 1)
.



Entropy of d-ary Trees

Let Wn denote d-ary trees with n internal nodes.

Entropy Recurrence:

We write k = (k1, . . . , kd). Then

H(Wn) = H(P (k)) + d
n−1
∑

k=0

pn,kH(Wk)

where P (k) is the split probability that can be expressed as

P (k) =
( n − 1

k1, . . . , kd

)gk1 · · · gkd
gn

, gn = (−1)
n
(d − 1)

n Γ(2 − d
d−1)

Γ(2 − d
d−1 − n)

.

Let α = d/(d − 1). Then pn,k is the prob. of one subtree of size k:

pn,k =
∑

k2+···kd=n−k

P (k) =
(α − 1)

n

n!Γ(k + α − 1)

k!Γ(n + α − 1)
.

Theorem 4 (Golebiewski, Magner, W.S., 2017). The entropy of a d-ary tree is

H(Wn) = H(P (k)) + α(n + α − 1)
n−1
∑

k=0

H(P (k))

(k + α − 1)(k + α)

where H(P (k)) is the entropy of P (k).



Sketch of the Proof

Apply the following lemma with an = H(P (k)).

Lemma 2. For constant α, x0 and x1, the recurrence

xn = an +
α

n

n!

Γ(n + α − 1)

n−1
∑

k=0

Γ(k + α − 1)

k!
xk, n ≥ 2

has the following solution for n ≥ 2:

xn = an+α(n+α−1)

n−1
∑

k=0

ak

(k + α − 1)(k + α)
+

n + α − 1

α + 1

(

x1 +
x0

α − 1

)

.

Remark. For example for d = 3 we have

H(P (k)) = log

(

n

2n

(2n

n

)

)

−
3

2n

n−1
∑

k=0

(2k
k

)

22n

(2n
n

)

22k
log

(

(2k
k

)

2k

)

and H(Wn) ≈ n · 2.470.



Outline Update

1. Multimodal and Multi-contex Data Structures

2. Entropy of Binary Trees

3. Entropy of General d-ary Trees

4. Entropy of Graphs

• Structural Entropy – Unlabeled Graphs
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Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model S of a graph G is defined for an unlabeled version.

Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P (S) = N(S) · P (G)
where N(S) is the number of different labeled graphs having the same

structure (and the same probability).

HG = E[− logP (G)] = −
∑

G∈G

P (G) logP (G), graph entropy

HS = E[− logP (S)] = −
∑

S∈S

P (S) logP (S) structural entropy



Relationship between HG and HS

d e

b c

a

Two labeled graphs G1 and G2 are called isomorphic

if and only if there is a one-to-one mapping from

V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism: For a graph G its automorphism

is adjacency preserving permutation of vertices of G
(i.e., graph perspective is the same).

The collection Aut(G) of all automorphism of G is

called the automorphism group of G.

Lemma 3. If all isomorphic graphs have the same

probability, then

HS = HG − logn! +
∑

S∈S

P (S) log |Aut(S)|,

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

N(S) =
n!

|Aut(S)|
.



Erdös-Rényi Graph Model and Symmetry

Our random structure model is the unlabeled version of the binomial

random graph model also known as the Erdös–Rényi random graph model.

The binomial random graph G(n, p) generates graphs with n vertices, where

edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then (where q = 1 − p)

P (G) = pkq(
n
2)−k.

Lemma 4 (Kim, Sudakov, and Vu, 2002). For Erdös-Rényi graphs and all p
satisfying

lnn

n
≪ p, 1 − p ≫

lnn

n
a random graph G ∈ G(n, p) is symmetric (i.e., Aut(G) ≈ 1) with probability

O
(

n−w
)

for any positive constant w, that is, for w > 1

P (Aut(G) = 1) ∼ 1 − O(n
−w

).



Structural Entropy for Erdös-Rényi Graphs

Theorem 5 (Choi, W.S 2009). For large n and all p satisfying lnn
n ≪ p and

1 − p ≫ lnn
n (i.e., the graph is connected w.h.p.), for some a > 0

HS =
(n

2

)

h(p)−logn!+O

(

logn

na

)

=
(n

2

)

h(p)−n logn+n log e+O(log n),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Proof idea:

1. HS = HG − log n! +
∑

S∈S P (S) log |Aut(S)|.

2. HG =
(n
2

)

h(p)

3.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).



Preferential Attachment Graphs

For an integer parameter m define graph Gm(n) with vertex set [n] =
{1, 2, . . . , n} n the following way:

1. Graph G1 ∼Gm(1) is a single node with label 1 with m self-edges.

2. To construct Gn+1 ∼Gm(n + 1) from Gn:

add vertex n + 1 and make m random choices v1, ..., vm as follows:

P (vi = w|Gn, v1, ..., vi−1) =
degn(w)

2mn
,

where degn(w) is the degree of vertex w ∈ [n] in the graph Gn.



Preferential Attachment Graphs

For an integer parameter m define graph Gm(n) with vertex set [n] =
{1, 2, . . . , n} n the following way:

1. Graph G1 ∼Gm(1) is a single node with label 1 with m self-edges.

2. To construct Gn+1 ∼Gm(n + 1) from Gn:

add vertex n + 1 and make m random choices v1, ..., vm as follows:

P (vi = w|Gn, v1, ..., vi−1) =
degn(w)

2mn
,

where degn(w) is the degree of vertex w ∈ [n] in the graph Gn.

Symmetry and Automorphism:

Figure 5: |Aut(G)|: For m = 1 (left), m = 4 (middle), defect (right).



Symmetry of Preferential Attachment Graphs?

Theorem 6 (Janson, Magner, W.S., 2014). [Symmetry Results for m = 1, 2.]

Let graph Gn be generated by the preferential model with parameter

m = 1 or m = 2. Then

Pr[|Aut(Gn)| > 1] > C

for some C > 0.

That is, for m = 1, 2 there are some symmetric subgraphs.

Conjecture For m ≥ 3 a graph Gn generated by the preferential model is

asymmetric whp, that is

Pr[|Aut(Gn)| > 1] → 0 [O(n
−ε

)],

that is, for m ≥ 3 the graph is asymmetric whp.



Symmetry of Preferential Attachment Graphs?

Theorem 7 (Janson, Magner, W.S., 2014). [Symmetry Results for m = 1, 2.]

Let graph Gn be generated by the preferential model with parameter

m = 1 or m = 2. Then

Pr[|Aut(Gn)| > 1] > C

for some C > 0.

That is, for m = 1, 2 there are some symmetric subgraphs.

Theorem [Luczak, Magner, W.S., 2016] For m ≥ 3 a graph Gn generated by

the preferential model is asymmetric whp, that is

Pr[|Aut(Gn)| > 1] → 0 [O(n
−ε

)],

that is, for m ≥ 3 the graph is asymmetric whp.



Entropy of Preferential Attachment Graphs

Theorem 8 (Luczak, Magner. W.S., 2017). [Entropy of preferential attachment

graphs] Consider G∼Gm(n) for fixed m ≥ 1. We have

H(G) = mn logn + mn (log 2m − 1 − logm! − A) + o(n),

where

A =

∞
∑

d=1

log d

(d + 1)(d + 2)
≈ 0.868.

Theorem 9 (Luczak, Magner, W.S., 2017). [Structural entropy of preferential

attachment graphs] Let m ≥ 3 be fixed. Consider G∼Gm(n). We have

H(S(G)) = (m − 1)n logn + R(n),

where R(n) satisfies

(

(m + 1)

(

log 2m

2
− A

)

+ 1

)

n ≤ R(n) ≤ O(n log logn)

Remark: Design efficient compression algorithms for labeled and unlabeled

Preferential Attachment Graphs matching the above entropy.



That’s It

THANK YOU


