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Multimodal Data Structures

Figure 1: Protein-Protein Intferaction Network with BioGRID database
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Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary frees on n leaves:

e Attime t = 0: Add a node.

o Aftime t = 1,...,n: Choose a leaf uniformly at random and attach 2
children.



Source models for trees

Probabilistic models for rooted binary plane trees:

Random binary trees on n leaves:

e Attimet = 0: Add a node.
o Aftime t = 1,...,n: Choose a leaf uniformly at random and attach 2

children.
Equivalent formulation (binary search free):;
e [nitially, add a node with label n.

e While there is a leaf with label ¢ > 1, choose a number ¢ uniformly at
random from [¢ — 1] and add a left and right child with labels with ¢ and

¢ — 1V, respectively.
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Source Models for Non-Plane Trees

Non-plane trees: Ordering of siblings doesn’t matter. Formally, a non-plane
free is an equivalence class of frees, where two trees are equivalent if one
can be converted to the other by a sequence of rotations.

Example of two equivalent trees:



Source models for vertex names

Parameters for vertex names:

A: The (finite) alphabet. aa,..d,

m > 0: the length of a name.

P: Markov transition matrix P(b,|a,) P(b,a;)
7 stationary distribution associated with P. bb,..b, bb,..b,

Generating vertex names given a tree structure:

e Generate a name for the root by taking m letters from a memoryless
source with distribution = on A.

e Given a name ajas,...,a, for an internal node, generate names
for its two children by,...b,, and b}, ..., b such that the jth letter,
j = 1,...,m, of each child, is generated according to the distribution
P(bjla;).

e LT,: abinary plane tree on n leaves with vertex names.



Source models for vertex names

Parameters for vertex names:

A: The (finite) alphabet. aa,..d,

m > 0: the length of a name.

P: Markov transition matrix P(b,|a,) P(b,a;)
7 stationary distribution associated with P. bb,..b, bb,..b,

Generating vertex names given a tree structure:

e Generate a name for the root by taking m letters from a memoryless
source with distribution = on A.

e Given a name ajas,...,a, for an internal node, generate names
for its two children b4,...b,, and b}, ...,b) such that the jth letter,

j = 1,...,m, of each child, is generated according to the distribution
P(bjla;).

e LT,: abinary plane tree on n leaves with vertex names.

Tree Entropy:

H(T,) = —Ellog P(T},)] = — > P(T, = tn) log P(T,, = ty,).

tn€l1n



Enfropy for Plane-Oriented Trees with Names

Theorem 1 (Magner, W.S., Turowski, 2016). The enfropy of a plane free with
names, generated according to the model with fixed length m, is given by

H(LT,) = logy(n — 1) + 2n i 105(2;k+_1)1)

k=2

_ — log,(k — 1)
=n - (2 kz:; UEEY -+ 2mh(P)> + O(logn).

4+ 2(n — 1)mh(P) + mh(m)

where h(m) = — %;47‘&‘(&) log w(a).

e log,(n — 1): The choice of the number of leaves in the left subfree of the
root.

n—1
o 2n 3 “20U: The accumulated choices of the number of leaves in left
k=2
subtrees.
e 2(n—1)mh(P): The choices of vertex names given those of their parents.

e mh(m): The choice of the vertex name for the roof.

See also Kieffer, Yang, W.S., ISIT 2009.



Sketch of Proof

Observe that

n—1

H(LT,|Fu(r)) = logy(n — 1) + 2mh(P) + % S" H(LTy|Fi(r))

ond H(LT,) = H(LT,|F.(r)) + H(F,(r)). where F,(r) is the name
assigned to the rooft r.



Sketch of Proof

Observe that
2 n—1
H(LT,|F,(r)) = log,(n — 1) + 2mh(P) +— Z H(LTy|Fy(r))
k=1
ond H(LT,) = H(LT,|F.(r)) + H(F,(r)). where F,(r) is the name

assigned to the rooft r.
The above recurrence has a simple solution as shown in the lemma below.

Lemma 1. The recurrence x; = 0,

Tpn = QAn + E T, M > 2

n—1

has the following solufion forn > 2:

Tn = Gn 1 Zk(k—l—l)



Entropy for Non-plane Trees

Entropy for non-plane frees is more difficult: let S,, denote a random non-

plane free on n leaves according fo our model.
Theorem 2 (Magner, Turowski, W.S., 2016). Entropy rate for non-plane trees is

H(S,) = (h(t) — h(t|s)) -n 4+ o(n) = 1.109n

where
e log, k B = by
h(t)_2;(k+l)(k—|—2)’ h(t|5)_1_;(2k—1)k(2k+1)’

and (the coincidence probability)

b = > (Pr[Tp = ti])”.

tkETk

Remark: It furns out that b,, satisfies for n > 2 the following recurrence

o (n—1)2zbb” ’

with b; = 1 (see Hwang, Martinez, et al., 2012).

Remark. The sequence b, is related to the Rényi entropy of order 1 of T},



Sketch of Proof

1. Observe that H(7,,) — H(S,) = H(T,|S,).



Sketch of Proof

1. Observe that H(7,,) — H(S,) = H(T,|S,).

2. Forse Sandt € T:t ~ s means the plane free ¢ is isomorphic 1o s.
We write:  [s] ={t e T:t~ s}.
3. We have

Pr(S, = s) = |[s]| Pr(T, =t), Pr(T, =t|S,=s)=1/|[s]|.

4. X (t): number of infernal vertices of ¢ with unbalanced subfrees;
Y (t): number of infernal vertices with balanced, non isomorphic subtrees.
Since |[s]| = 2¥®TY ) thus

H(T,|Sy) =— > Pr(T,=t,5, =s)logPr(T, = t|S, = s) = EX,, + EY,
teETn,sESn

5. Let Z(t) be number of internal verfices of ¢ with isomorphic subtrees.
Obviously, X (t) + Y (t) + Z(t) = n — 1. Let Z,(t) = >_.Z,(s). Then

n—1
EZ,(s) = EI (T, ~ s xs) + 2 ; EZ;(s)

where
Pr? (T}, j9~s)
- :

n—

EI (T, ~sxs5)=1(n=2A(s))
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Generalized Trees

Let T3, represent a random free t,, on n infernal nodes.
No correlated names.

General Probabilistic Model:
Tree t,, is split into d subtrees of size k4, ..., kg where

ki 4+ +kg=n— 1.

Then we assume that
d
P(Ty =t,) = P(ki,.... ko) [[ P (T3, = ta,)
=1

where the split probability P (k4. ..., ky) is the probability of the split af the
root of sizes k1, . . . kg, respectively.

This split probability P(kq, . .., kq) is different for variety d-ary trees.



m~ary Search Trees

4.7,3.5,1.2.9.6.8)
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Figure 2: 3-ary search tree built over (4,7,3,5,1,2,9,6,8).



m~ary Search Trees

4.7,3.5,1.2.9.6.8)
4,7

I O

5.6 8.9

Jil VAN

Figure 2: 3-ary search tree built over (4,7,3,5,1,2,9,6,8).
Theorem 3 (Fill, Hwang, et al., 2005). For m-ary search tree, the entropy H '™

is
2 log (,," )
H™ = p . E m—1 + o(n
" 2Hm — 2435 (k+ 1)(k + 2) ()

where H,, = >, 1 is the harmonic number.




Generating d-ary Trees: 3-ary Example

(@) ©) ©

() ()

Figure 3: Labeled and unlabeled 3-ary trees of size 4.
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General Plane Trees

(Q) (o) ©)

(d) (e ®

ha ha

N\
3 3 O

Figure 4: Labeled and unlabeled general tfrees of size 5.



Entropy of d-ary Trees

Let W,, denote d-ary trees with n internal nodes.

Enfropy Recurrence:

We write k = (k1, ..., kq). Then
n—1
H(W,) = H(P(k)) +d ) _ pusH(Wk)
k=0

where P (k) is the split probability that can be expressed as

n )gkl I C1y(d - 1) (2 —35)
ki ... ky

g r2-g35—n)

P(x) = (

Let o = d/(d — 1). Then p,, ;. is the prob. of one subfree of size k:

(a—D)nll'(k+a —1)
Ell'(n +a —1)

Pnk = Z P(k) —

kot--kg=n—k



Entropy of d-ary Trees

Let W,, denote d-ary trees with n internal nodes.

Enfropy Recurrence:

We write k = (k1, ..., kq). Then
n—1
H(W,) = H(P(k)) +d > p.xH(W;)
k=0

where P (k) is the split probability that can be expressed as

-1 (2 — -4
n )gkl gkd, Gn = (_1)n(d . 1)TL ( dd—l) .
k’l,...,kd dn F(Z—E—n)

P(x) = (

Leta = d/(d — 1). Then p,, ;. is the prob. of one subfree of size k:

(a—1D)nl'(k+a—1)
Ell(n +a —1)

Pnk = Z P(k) —

ko+-kg=n—k
Theorem 4 (Golebiewski, Magner, W.S., 2017). The enfropy of a d-ary free is

H(P(k))

H(Wn):H(P(k))+a(”+o‘_1)Z(k_|_a_1)(k—|—a)

k=0

where H (P (k)) is the entropy of P (k).



Sketch of the Proof

Apply the following lemma with a,, = H (P (k)).

Lemma 2. For constant o, xg and x1, the recurrence

o n! AT(k+a—1)
mn_an—i_zf‘(n—ka—l); k! T
has the following solufion forn > 2:
n—1
ar n+oa—1
n — Un —1
x an,+a(n+ o )Z(k+a—1)(k—|—o¢)+ o1

k=0
Remark. For example for d = 3 we have
n /2n 3 n—1 2k 22n
H(P(k)) = log (27(n )) - — (2’;) log <

and H(W,,) = n - 2.470.
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Graph and Structural Entropies

Information Content of Unlabeled Graphs:

A structure model § of a graph G is defined for an unlabeled version.
Some labeled graphs have the same structure.

——————————————————————————————————————————

__________________________________________

——————————————————————————————————————————

__________________________________________

Graph Entropy vs Structural Entropy:

The probability of a structure S is: P(S)= N(S)- - P(G)
where N (S) is the number of different labeled graphs having the same
stfructure (and the same probability).

Hg = E[-logP(G)] =— Z P(G)log P(G), graph entropy
Geg
Hs = E[-logP(9)] = Z P(S)log P(S) structural entropy

SeS



Relationship between H; and Hg

Two labeled graphs G; and G5 are called isomorphic
if and only if there is a one-to-one mapping from
V (G1) onto V (G2) which preserves the adjacency.

Graph Automorphism: Fora graph G its automorphism
is adjacency preserving permutation of verfices of G
(i.e., graph perspective is the same).

The collection Aut(G) of all automorphism of G is
called the automorphism group of G.

Lemmma 3. If all isomorphic graphs have the same
probability, then

Hs = Hg — logn! + Z P(S)log|Aut(S)],
SeS

where Aut(S) is the automorphism group of S.

Proof idea: Using the fact that

d



Erdos-Rényi Graph Model and Symmetry

Our random structure model is the unlabeled version of the binomial
random graph model also known as the Erdés-Rényi random graph model.

The binomial random graph G(n, p) generates graphs with n vertices, where
edges are chosen independently with probability p.

If a graph G in G(n, p) has k edges, then (where g = 1 — p)

P(G) = p"g2)k

Lemma 4 (Kim, Sudakov, and Vu, 2002). For Erdds-Rényi graphs and all p
saftisfying

Inn Inn

n n
arandom graph G € G(n, p) Is symmetric (i.e., Aut(G) ~ 1) with probability
O (n™") for any positive constant w, that is, forw > 1

P(Aut(G) = 1) ~ 1 — O(n™").



Structural Entropy for Erdos-Rényi Graphs

Theorem 5 (Choi, W.S 2009). For large n and all p satisfying 1“7” < p and
1—p> an (i.e., the graph is connected w.h.p.), for some a > 0

1
Hs = <n>h(p)—log n!4+O 28T — <n>h(p)—nlog n+nloge+O(logn),
2 n 2

where h(p) = —plogp — (1 — p) log (1 — p) is the enfropy rate.

AEP for structures: 2~ (3)(nm+e)+losn! < p(gy < o=(8)(h(p)—e)+logn!,
Proof idea:

1. Hs = Hg — logn! 4+ > 4.5 P(S) log |Aut(S)|.

2. Hg = (3)h(p)

3. > ges P(S) log [Aut(S)| = o(1) by asymmetry of G(n, p).



Preferential Attachment Graphs

For an integer parameter m define graph G,,(n) with vertex set [n] =
{1, 2,...,n} nthe following way:

1. Graph G ~ G,,(1) is a single node with label 1 with m self-edges.

2. To construct G101 ~ G(n + 1) from G,,:
add vertex n + 1 and make m random choices v, ..., v,, as follows:

deg,, (w)

P(v, = w|Gp, v, ...,v; 1) =
2mn

where deg, (w) is the degree of vertex w € [n] in the graph G,,.



Preferential Attachment Graphs

For an integer parameter m define graph G,,(n) with vertex set [n] =
{1, 2,...,n} nthe following way:

1. Graph G ~ G,,(1) is a single node with label 1 with m self-edges.

2. To construct G101 ~ G(n + 1) from G,,:
add vertex n + 1 and make m random choices v, ..., v,, as follows:

deg,, (w)

Pv, =w|Gp, vy, ...,v,-1) =
2mn

where deg,, (w) is the degree of vertex w € [n] in the graph G,,.

Symmetry and Automorphism:

Numerical defect vs graph size for the Uniform Attachment model

= m - L = L -
0 200 400 600 800 1000
Number of vertices Number of vertices Graph size (number of vertices)

Figure &5: |Aut(G)|: Form = 1 (left), m = 4 (middle), defect (right).



Symmetry of Preferential Aftachment Graphs?

Theorem 6 (Janson, Magner, W.S., 2014). (Symmeftry Results form = 1, 2.)

Lef graph G, be generafed by the preferential model with parameter
m = 1 orm = 2. Then

Pr{|Aut(G,)| > 1] > C

for some C > 0.

Thatis, form = 1, 2 there are some symmetric subgraphs.

Conjecture For m > 3 a graph G, generated by the preferential model is
asymmetric whp, that is

Pr[|[Aut(G,)| > 1] — 0 [O(n” )],

that is, for m > 3 the graph is asymmetric whp.



Symmetry of Preferential Aftachment Graphs?

Theorem 7 (Janson, Magner, W.S., 2014). (Symmeftry Results form = 1, 2.)

Lef graph G, be generafed by the preferential model with parameter
m = 1 orm = 2. Then

Pr{|Aut(G,)| > 1] > C

for some C > 0.

Thatis, form = 1, 2 there are some symmetric subgraphs.

Theorem (Luczak, Magner, W.S., 2016) Form > 3 a graph G,, generated by
the preferential model is asymmeftric whp, that is

Pr[|[Aut(G,)| > 1] — 0 [O(n” )],

that is, for m > 3 the graph is asymmetric whp.



Entropy of Preferential Attachment Graphs

Theorem 8 (Luczak, Magner. W.S., 2017). (Entfropy of preferential atffachment
graphs) Consider G ~ G,,(n) for fixed m > 1. We have

H(G) =mnlogn + mn (log2m — 1 — logm! — A) 4+ o(n),

where

> log d
A = Z ~ 0.868.
£~ (d +1)(d + 2)

Theorem 9 (Luczak, Magner, W.S., 2017). (Structural enfropy of preferential
attachment graphs) Let m > 3 be fixed. Consider G ~ G,,(n). We have

H(5(G)) = (m —1)nlogn + R(n),

where R(n) safisfies

((m +1) <1°g22m _ A) n 1) n < R(n) < O(nloglogn)

Remark: Design efficient compression algorithms for labeled and unlabeled
Preferential Attachment Graphs matching the above entropy.



That’s It
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