Sebastian Wild

Sebastian Wild

wild@cs.uni-kl.de

- 2
I = TECHNISCHE UNIVERSITAT
s KAISERSLAUTERN

originates from joint work with
Martin Aumiiller, Martin Dietzfelbinger,
Conrado Martinez, and Markus Nebel

AofA 2017

28th International Meeting on Probabilistic,
Combinatorial and Asymptotic Methods
for the Analysis of Algorithms

fa l 11 ol

Quicksort Is Optimal For Many Equal Keys

4

2017-06-19

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

W N -

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 0/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs
variance

tail inequalities

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs
variance
tail inequalities

limit distributions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences

variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences

. singularity analysis
variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences

singularity analysis

variance . .
Euler differential eq.

tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences

singularity analysis
Euler differential eq.
tail inequalities Martingales

variance

limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences
singularity analysis
Euler differential eq.
tail inequalities Martingales

contraction method

variance

limit distributions

(semi-)local limit laws

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences
singularity analysis
Euler differential eq.
tail inequalities Martingales

contraction method

variance

limit distributions

. . branching processes
(semi-)local limit laws 8P

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences
singularity analysis
Euler differential eq.
tail inequalities Martingales

contraction method

variance

limit distributions

. . branching processes
(semi-)local limit laws 8P

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

telescoping recurrences pivot sampling

expected costs
singularity analysis
Euler differential eq.
tail inequalities Martingales

contraction method

variance

limit distributions

. . branching processes
(semi-)local limit laws 8P

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences pivot sampling
. singularity analysis .
variance . . Insertionsort cutoff
Euler differential eq.

tail inequalities Martingales

limit distributions contraction method

. . branching processes
(semi-)local limit laws 8P

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs telescoping recurrences pivot sampling
. singularity analysis .
variance . . Insertionsort cutoff
Euler differential eq.

tail inequalities Martingales multiway partitioning

limit distributions contraction method

. . branching processes
(semi-)local limit laws 8P

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

telescoping recurrences

expected costs pivot sampling

singularity analysis

variance . . Insertionsort cutoff
Euler differential eq.
tail inequalities Martingales multiway partitioning
limit distributions contraction method Quickselect

. . branching processes
(semi-)local limit laws 8P

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

telescoping recurrences

expected costs pivot sampling

singularity analysis

variance . . Insertionsort cutoff
Euler differential eq.
tail inequalities Martingales multiway partitioning
limit distributions contraction method Quickselect

branching processes

(semi-)local limit laws constant space

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs telescoping recurrences pivot sampling key comparisons
. singularity analysis)
variance . . Insertionsort cutoff
Euler differential eq.
tail inequalities Martingales multiway partitioning
limit distributions contraction method Quickselect

branching processes

(semi-)local limit laws constant space

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs telescoping recurrences pivot sampling key comparisons
. singularity analysis . .
variance . . Insertionsort cutoff symbol comparisons
Euler differential eq.
tail inequalities Martingales multiway partitioning
limit distributions contraction method Quickselect

branching processes

(semi-)local limit laws constant space

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs telescoping recurrences pivot sampling key comparisons
. singularity analysis . .
variance . . Insertionsort cutoff symbol comparisons
Euler differential eq.
tail inequalities Martingales multiway partitioning swaps
limit distributions contraction method Quickselect

branching processes

(semi-)local limit laws constant space

continuous master theorem

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons

swaps

scanned elements

2017-06-19

1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons
swaps
scanned elements

branch misses

2017-06-19

1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Sebastian Wild

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons
swaps
scanned elements

branch misses

2017-06-19

1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

@ but: most results consider random permutations as input!

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons
swaps
scanned elements

branch misses

2017-06-19

1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

@ but: most results consider random permutations as input!

not done in libraries.. ..

@ partly justified: we can (should!) randomize Quicksort,
~ every input appears randomly ordered

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons
swaps
scanned elements

branch misses

2017-06-19

1/16

Don’t we know everything about Quicksort by now?

@ Extensive literature and results on Quicksort

Type of result

expected costs
variance
tail inequalities
limit distributions

(semi-)local limit laws

Analysis Techniques Algorithm variants

telescoping recurrences pivot sampling
singularity analysis
Euler differential eq.

Martingales multiway partitioning

contraction method Quickselect

Insertionsort cutoff

branching processes constant space

continuous master theorem

@ but: most results consider random permutations as input!

not done in libraries.. ..

@ partly justified: we can (should!) randomize Quicksort,
~ every input appears randomly ordered

@ Catch: Elements with equal keys won't go away!

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

Cost Measures

key comparisons
symbol comparisons
swaps
scanned elements

branch misses

2017-06-19

1/16

Assumptions:

@ Input:

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A Multiset Model:
Random permutation Uy, ..., U, of fixed multiset
X1,...,Xy Number of occurrences of values 1,...,u

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A Multiset Model:
Random permutation Uy, ..., U, of fixed multiset

X1y Xu number of occurrences of values 1,...,u
profile X of input

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A

G

Z

(B)

Sebastian Wild

Multiset Model:
Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u
profile X of input

Discrete i.i.d. Model:

Us,..., U, i.i.d. with PrlU; =v] = gy,

d=1(q1,-...,qu) afixed universe distribution

Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A

G

Z

(B)

Sebastian Wild

Multiset Model:
Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u
profile X of input

Discrete i.i.d. Model:

Ui,..., Uy iii.d. with PrilU; =v] = qy, <

d=1(q1,-...,qu) afixed universe distribution

~ random profile X 2 Mult(n, g)

Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..oy Up iniod. with PrUy =] = gy <
d=1(q1,-...,qu) afixed universe distribution

~ random profile X 2 Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
recursive call recursive call

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..oy Up iniod. with PrUy =] = gy <
d=1(q1,-...,qu) afixed universe distribution

~ random profile X 2 Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..oy Up iniod. with PrUy =] = gy <
d=1(q1,-...,qu) afixed universe distribution

~ random profile X 2 Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

~ subproblems of same type, (restricted to a sub-universe)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..oy Up iniod. with PrUy =] = gy <
d=1(q1,-...,qu) afixed universe distribution

~ random profile X 2 Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

~ subproblems of same type, (restricted to a sub-universe)

© Cost: #ternary comparisons

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..., Uy ivi.d. with PrU; = v] = qu
d=1(q1,-...,qu) afixed universe distribution

—~ random profile X £ Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

~ subproblems of same type, (restricted to a sub-universe)

© Cost: #ternary comparisons

Median-of-(2t +1) Quicksort:

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..., Uy ivi.d. with PrU; = v] = qu
d=1(q1,-...,qu) afixed universe distribution

—~ random profile X £ Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

~ subproblems of same type, (restricted to a sub-universe)

© Cost: #ternary comparisons

. . Example:
Median-of-(2t +1) Quicksort: t=3
@ median-of-(2t + 1) LT T Iel] 1]
1 1

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Assumptions:

@ Input: (A JES Multiset Model:
}) Random permutation Uy, ..., U, of fixed multiset

X1y Xu n‘unjbe‘r of occurrences of values 1,...,u

profile X of input

(B) Discrete i.i.d. Model:
m@ U, ..., Uy ivi.d. with PrU; = v] = qu
d=1(q1,-...,qu) afixed universe distribution

—~ random profile X £ Mult(n, g)

@ fat-pivot partitioning | <P [pPPl >P |
o all duplicates of pivots removed recursive call m

~ subproblems of same type, (restricted to a sub-universe)

© Cost: #ternary comparisons

. . Example:
Median-of-(2t +1) Quicksort: t=3
e median-of-(2t + 1) ”OEtOday (TTTIPT T T
@ (extension to asymmetric sampling possible) t t

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2/16

Previous work on equal keys

Rather little is known!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Keys

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICKT

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be presentin the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort program when equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the

method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words. analysis of algorithms, equal keys, Quicksort, sorting

rﬁal For Many Equal Keys 2017-06-19

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Keys
@ Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT IS OPTIMAL

Abstract. This pa
when equal keys are i

i o . of s Robert Sedgewick
method of always stoj
b Jon Bentley

Key words. analys

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Keys
@ Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:
@ Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Vo6 Koy o 1977 An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

‘WILLIAM H. BURGE

Abstract. This pa 1BM Thomas J. Walson Research Center, Yorktown Heights, New York
when equal keys are li
the average number o ABsTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
is shown that, of the composed from a multiset {ps - 1, P+ 2, ps - 3, +-+, Pa - 1} is obtained, and hence the expected
method of always stop) . weight of such trees. The expected number of left-to-right local minima and the expected number of
best. cycles in sequences composed from a multiset are then deduced from these results.

Key words. anal; . .
Y v KEY WORDS AND PHRASES: binary search trees, multiset

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Keys
@ Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

@ Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
@ Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

SIAM . CompuT,
Val.6,No.2,June 1977 An Ar
Seque ’
Theoretical
i Computer Science
WILLIAI ELSEVIER Theoretical Computer Science 156 (1996} 39-70
Abstract. This pa IBM Th
when equal keys are li A L.
the average number of JR—— Binary search trees constructed from nondistinct keys
is shown that, of the composed| . . . ae
method of always stop weigntof with/without specified probabilities
best. cycles in gf B
Key words. analy Rainer Kemp
KEY WORD) Johann Wolfgang Goethe-Universitat, Fachbereich Informatik, D-60054 Frankfurt am Main, Germany

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!
@ Sedgewick 1977: Quicksort on Equal Keys
@ Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)
A bit more on BSTs:
@ Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
@ Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
@ Archibald & Clément 2006: Average depth in a BST with repeated keys

SIAM J. COMPUT.
Vol 6N 2. Sone 1977 An Ay
Sequd
Fourth Colloguium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309-320
i)
‘WILLIA] ELSEVI
Abstract, This pa 1BM Th Average depth in a binary search tree with
when equal keys are li .
the average number o pr— Bing repeated keys
is shown that, of the composed|
method of always stop . weight of Margaret Archibald' and Julien Clément>*
best. eyeles in of
Key words. analy oy wom P 0. Wits, 2050 South Africa,
Johann Laboratoire d't Université de Fran

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Keys

@ Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)
A bit more on BSTs:

@ Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
@ Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
@ Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol 6N 2. Sone 1977 An Ay
Sequd
Fourth Colloguium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309-320
AN
‘WILLIA] ELSEVI
Abstract, This pa 1BM Th Average depth in a binary search tree with
when equal keys are li N
the average number o pr— Bing repeated keys
is shown that, of the composed|
method of always stop . weight of Margaret Archibald' and Julien Clément>*
best. cycles in s
Key words. analy; o womd P 0. Wits, 2050 South Africa
Johann Laboratoire d't Université de Fran

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Previous work on equal keys

Rather little is known!

@ Sedgewick 1977: Quicksort on Equal Kevs
o Sedgewick & Bentley 2002: Quicksq A[| these works only consider classic Quicksort:
A bit more on BSTs: @ No sampling to choose pivots.

@ Burge 1976: An Analysis of BSTs Forme @ (No multiway partitioning.)
@ Kemp 1996: BSTs constructed from nont - - — —
@ Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

)
SIAM J. CompuT,
Vo1.6.No..une 1977 An Ay
Sequd
Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309-320
» iy
WILLIA BLSEVI
Abstract, This pa 1BM Th Average depth in a binary search tree with
when equal keys are R
the average number o pr— Bing repeated keys
is shown that, of the composed|
method of always stop - weight of Margaret Archibald' and Julien Clément>*
best. cyeles in gf
Key words. analy: ! Se Mather I P. 0. Wits, 2050 South Africa,
ey worp| Joh ibaiden
onann 2CNRS UMR 8049, Institur 5P Laboratoire d't Université de Fran

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3/16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4/16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Analysis of Quicksort with equal keys

1. Define C(x1,....xn) = C(1,n) to be the mean # compares to sort the file

c(1,n) =N_1+§ S xj(C(L-1)+C(j+1n))

1sj=n

2. Multiply both sides by N =x1+..+ xp

NC(Ln) =N(N-1)+ ¥ xiC(1,j-1)+ > xjC(j+1,n)

1sj=n 1sj=n
3. Subtract same equation for x3,...,xp and let D(1,n) = C(1,n) - C(2,n)
(X1 + et X0)DL) = X6 = X1+ 2X1 (X2 + ot X0)+ Y X D(L,§~1)
2s<jsn

4. Subtract same equation for X1,...,Xp_1

(X1 + ...+ Xn)D(1,n) = (X1 + ... + Xn_1)D(1,n-1) = 2x1xp + x,D(1,n - 1)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys

2017-06-19

4/16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Analysis of Quicksort with equal keys

1. Define C(x1,....xn) = C(1,n) to be the mean # compares to sor

ClLn =N-1+1 3 x;(c(1,j-1)+C(j+1,n)
lejsn
2. Multiply both sides by N =xq+...+x,

NCR) -NN-1+ 3 xjcLj-D+ 3 xjc+1Ln)
1sj=n 1sj=n

3. Subtract same equation for x3,...,xp and let D(1,n) = C(1,n) -
(X1 +...+ Xp)D(1,n) = xf = X1 +2X1(X2 +... + Xp) + 2 XjD(l,j

2s<jsn
4. Subtract same equation for X1,...,Xp_1

(X1 + ...+ Xn)D(1,n) = (X1 + ...+ Xn_1)D(1,n - 1) = 2x1xp, + X,D(1,

Analysis of Quicksort with equal keys (cont.)

(X1 + ...+ Xn)D(L,n) = (X1 +...+ Xn_1)D(A,n-1) = 2x1xp + X D(1,n - 1)
5. Simplify, divide both sides by N=xq +...+ X,

D)= D(L,n-1)+ 2XXn__
X{+...+Xp

6. Telescope (twice)
2XKX
cam=N-n+ 3 KL
lsk<jsnxk Toco +Xj
THEOREM. Quicksort (with 3-way partitioning, randomized) uses
&, with p; = Xj/N)

N-n+2QN compares (where Q = 2
Pk +...t+ pj

1sk<jsn
to sort an (x1,...,xp) - file, on the average .

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

2017-06-19 4/16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort: Expected comparisons expressible exactly.

Analysis of Quicksort with equal keys (cont.)

Analysis of Quicksort with equal keys

1. Define C(x1,....xn) = C(1,n) to be the mean # compares to sor

c(1,n)=N-1 +$ S xj(C(L-1)+C(j+1n)) (X1 + ...+ Xp)D(,) = (X1 + ...+ Xp1)D(1,n - 1) = 2x1xp + xpD(1,n - 1)
Isjsn 5. Simplify, divide both sides by N =xj +...+ xp
2. Multiply both sides by N =xq+...+x, D) =DLn-1)+ 2X1Xn
NC@) =N(N-1D+ 3 xjCLj-1)+ 3 x;C(j+1,n) X{ 4.t Xn
1<j=n 1sj=n

6. Telescope (twice)

3.54 1Sk<j5n”" Ty

THEOREM. Quicksort (with 3-way partitioning, randomized) uses
PkPj
Pk +...+ |:)J

4.54

N-n+2QN compares (where Q = E
1<k<j<n

, with p5=x,'/N) i/N)

to sort an (xi,...,xn) -file, on the average .

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4/16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
within a constant factor of the entropy H

lower bound: €>NH-N (information theory)
upper bound: C <2In2NH+N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, C /N — H as sample size increases.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5/16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
within a constant factor of the entropy H

lower bound: €>NH-N (information theory)
upper bound: C <2In2NH+N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

(Conjecture: With sampling, C /N — H as sample size increases.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5/16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
within a constant factor of the entropy H

lower bound: €>NH-N (information theory)
upper bound: C <2In2NH+N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

(Conjecture: With sampling, C /N — H as sample size increases.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5/16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
within a constant factor of the entropy H

lower bound: €>NH-N (information theory) >l<
upper bound: C <2In2NH+N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

(Conjecture: With sampling, C /N — H as sample size increases.)

* subject to some assumptions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5/16

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

W N -

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5/16

Quicksort & search trees

Classic Fact:
@ Recursion Tree of Quicksort = Naturally grown BST from input

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact:
@ Recursion Tree of Quicksort = Naturally grown BST from input
~ Comparisons in Quicksort = Comparisons to built BST

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact:
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

@2 13354435 2]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

@2 13354435 2]

[2]1]3]3]3]2]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

[271 333 2]4 4 4[5 5]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

@1 333 2]4 4 4[5 5]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

@1 333 2]4 4 4[5 5]
0 :60]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

[271 3733 2]4 4 4@ 5]
M :630]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

[271 3733 2]4 4 4@ 5]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot)

l4]2]1]3]3]|5]4]4]3]5]2]

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 42133544352

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 42133544352

[271 333 2]4 4 4[5 5] @
]

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 2133544352

[271 333 2]4 4 4[5 5] (4)
M::653 s ©
]

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 133544352

[271 333 2]4 4 4[5 5] (4)
M::653) 5 e
1 3733 (1)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 33544352

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 3/5 44352

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 5/4 4352

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 4)4 352

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 413 5 2

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 3)5 2

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 5)2

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 2

[271 333 2]4 4 4[5 5]
1

3 3 3

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 42133544352

[271 333 2]4 4 4[5 5]
1

3 3 3

~ Equivalence holds also with duplicates.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 42133544352

[271 333 2]4 4 4[5 5]
1

3 3 3

~ Equivalence holds also with duplicates.

This was only basic Quicksort . ..

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Quicksort & search trees

Classic Fact: (without duplicates)
@ Recursion Tree of Quicksort = Naturally grown BST from input

~ Comparisons in Quicksort = Comparisons to built BST
= Comparisons to search input in final BST

@ How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

l4]2]1]3]3]|5]4]4]3]5]2] 42133544352

[271 333 2]4 4 4[5 5]
1

3 3 3

~ Equivalence holds also with duplicates.

This was only basic Quicksort ... how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

@ Leaves buffer k = 2t + 1 elements.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

4 2 1 3 3 5 4 4 3 5 2

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

4 2 1 3 3 5 4 4 3 5 2

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

4121133 5 4 435 2

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

[4]2]1]@)3]5]4]4]3]5]2]}

2 1 2|3 3 3|4 5 4 4 5

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

l4]2]1]3]3]5]4]4]3]5]2]

2 1 2|3 3 3|4 5 4 4 5

H_/
Insertionsort

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

l4]2]1]3]3]5]4]4]3]5]2]

2 1 2|3 3 3|4 5 4 4 5

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

l4]2]1]3]3]5]4]4]3]5]2]

21 2|3 3 3|45 4(@5

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2

l4]2]1]3]3]5]4]4]3]5]2]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2]

Insertionsort

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2]

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

(2lil2)s 3. 3[als]a14]5)
212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 2133544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 133544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 33544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 3/5 44352

212 474 4[5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 544352

212 474 4[5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 544352

212 474 4|5 5]

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 5/4 4352

©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 4)4 352

T2 o5 ©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 413 5 2

©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 3)5 2

3
©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 5)2

©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2] 2

©

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2] 2

T2 o5 ©
212 44 4[5 5] a%sh

55

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2] 2

©
0

55 () (55)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

l4]2]1]3]3]5]4]4]3]5]2] 2

T ey ©
212 474 4|5 5] 212 (4)

55 () (55)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

T ey ©
212 474 4|5 5] 212 (4)

55 () (55)

~+ Correspondence extends to

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

T ey ©
212 474 4|5 5] 212 (4)

55 () (55)

~+ Correspondence extends to
e Pivot Sampling (any scheme, not only median)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

T ey ©
212 474 4|5 5] 212 (4)

55 () (55)

~+ Correspondence extends to

e Pivot Sampling (any scheme, not only median)
o (s-way Partitioning ~ s-ary search trees)«— (oday

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
@ Leaves buffer k = 2t + 1 elements.

@ If buffer is full, leaf is split ~~ new internal node with chosen pivot.

Median-of-5 Quicksort t=2) 5-Fringe-Balanced Tree

[4]2]1]3]3]5]4]4]3]5]2] 42133544352

T ey ©
212 474 4|5 5] 212 (4)

55 () (55)

~+ Correspondence extends to

e Pivot Sampling (any scheme, not only median)
o (s-way Partitioning ~ s-ary search trees)«— (oday

~ Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

o but: T also depends on U (Recall: T is built from Ti1)

~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

o but: T also depends on U (Recall: T is built from Ti1)

~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

o but: T also depends on U (Recall: T is built from Ti1)

~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

o but: T also depends on U (Recall: T is built from Ti1)

~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)

o but: T also depends on U (Recall: T is built from Ti1)

~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A Ad

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A Ad

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A Ad

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

(41515151213151412121215151514 2151115141213 1412121 11214121215151213141 213141131212 [11414T41112]3]3]]
A Ad

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

A AJ A
\ A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

A AJ A
\ A

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

A AJ A
\ A

Observation: T becomes stationary after each value was inserted!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515151213151412121215151514121511151412[3[41212[1[2141212[5]51213 1412131411 [31212[1 41414 1]2]3]3]

A AJ A
\ A

Fringe-balanced:
~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515(5121315[412121215[5/5/412[5[105/412[31412]2[1]214]2]2]5/5/213[412]3[4[1]312]2[1]4]414[1]2]3]3]

A AJ N
\ A

Fringe-balanced:
~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

\ ! 4
'O' Split input into tree-growing part and searching part:

4 \

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515(5121315[412121215[5/5/412[5[105/412[31412]2[1]214]2]2]5/5/213[412]3[4[1]312]2[1]4]414[1]2]3]3]

A AJ N
\ A

VT

tree-growing part ~» T Fringe-balanced:
~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

\ ! 4
'O' Split input into tree-growing part and searching part:

4 \

@ We built T until it is stationary, ignoring costs.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515(5121315[412121215[5/5/412[5[105/412[31412]2[1]214]2]2]5/5/213[412]3[4[1]312]2[1]4]414[1]2]3]3]

A AJ N
\ A

VT

tree-growing part ~» T Fringe-balanced:
~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

WA, hopefully a short prefix!
'O' Split input into tree-growing part and searching part:
=

4 \

@ We built T until it is stationary, ignoring costs.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515(5121315[412121215[5/5/412[5[105/412[31412]2[1]214]2]2]5/5/213[412]3[4[1]312]2[1]4]414[1]2]3]3]

A AJ N
\ A

~" ~"
tree-growing part ~» T searching part ~ Xs Fringe-balanced:

~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

WA, hopefully a short prefix!
'O' Split input into tree-growing part and searching part:
=

4 \

@ We built T until it is stationary, ignoring costs.
© Determine costs of searching remaining elements.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Ti1)
~ direct analysis no simpler than for Quicksort

[41515(5121315[412121215[5/5/412[5[105/412[31412]2[1]214]2]2]5/5/213[412]3[4[1]312]2[1]4]414[1]2]3]3]

A AJ N
\ A

~" ~"
tree-growing part ~» T searching part ~ Xs Fringe-balanced:

~~ stationary after each value
<« inserted k = 2t + 1 times

Observation: T becomes stationary after each value was inserted! (up to k duplicates in buffer)

hopefully a short prefix!

\ ! 4
',Q\ Split input into tree-growing part and searching part:

A Two parts of input
always dependent!

@ We built T until it is stationary, ignoring costs. = ol [S

© Determine costs of searching remaining elements.«—— -
wo parts are

B, | y
Q independent (i.i.d.!)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Tl
~ direct analysis no simpler than for Quicksort

(4151515121315141212121515[51412151 10514121314 1212111214121215[51213 141213 1411131212[114][41411[2]3]3]

A A{\ J{\

~" ~"
tree-growing part ~» T searching part ~ Xs Fringe-balanced:
~~ stationary after each value
<« inserted k = 2t + 1 times
(up to k duplicates in buffer)

Observation: 7 becomes stationary after each value was inserted!
hopefully a short prefix!

\ ! 4
'O' Split input into tree-growing part and searching part:

4 \

@ We built T until it is stationary, ignoring costs.

© Determine costs of searching remaining elements.«—— -
wo parts are

independent (i.i.d.!)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Tree-growing and searching

~~ Quicksort costs = costs to search input U = (Uy, ..., Uy) in final tree T.

o T fixed ~ search cost depends only on profile X = (X1, ..., Xy)
o but: T also depends on U (Recall: T is built from Tl
~ direct analysis no simpler than for Quicksort

(4151515121315141212121515[51412151 10514121314 1212111214121215[51213 141213 1411131212[114][41411[2]3]3]

A A{\ J{\

~"
tree-growing part ~» T

~"
searching part ~ Xs Fringe-balanced:
~~ stationary after each value

. . . <« inserted k = 2t + 1 times
Observation: 7 becomes stationary after each value was inserted! (up to k duplicates in buffer)
WA, hopefully a short prefix!

',O\' Split input into tree-growing part and searching part:
=
@ We built T until it is stationary, ignoring costs.

© Determine costs of searching remaining elements.«—— -
N Wwo parts are
~ profile Xs of search part independent of T independent (i.i.d.!)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8/16

Bounding the tree-growing part

[4151515121315141212121515151412151115141213141212112141212151512131412131411131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 -

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 |

tree-growing part ~ T TLT searching part ~ Xs

~+ Allow only first nt elements for tree growing.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

. . . [415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]
Goal: ignore tree-growing for analysis. -+ x4 |
to be chosen

tree-growing part ~ T TLT searching part ~ Xs

~ Allow only first 't elements for tree growing.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

. . . [415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]
Goal: ignore tree-growing for analysis. -+ x4 |
to be chosen

tree-growing part ~ T TLT searching part ~ Xs

~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)

nr=n""fFwithe<e ~

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow T:

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow T:
e never morethan < nt-u

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A?Q\,l Problem: if a value occurs < k times in first nt elements, 7 not complete

~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A}\,l Problem: if a value occurs < k times in first nt elements, 7 not complete
~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

c:,‘,‘ folklore result: random BSTs have logarithmic height w.h.p.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A}\,l Problem: if a value occurs < k times in first nt elements, 7 not complete
~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

¢ folklore result: random BSTs have logarithmic height w.h.p.
e can extend this to fringe-balanced trees ~~ nt-O(logn) = O0(n'"Flogn) to build T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A}\,l Problem: if a value occurs < k times in first nt elements, 7 not complete
~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

¢ folklore result: random BSTs have logarithmic height w.h.p.
e can extend this to fringe-balanced trees ~» nt-O(logn) = O(n'"¢logn) to build T

~+ Expected Quicksort costs: [E[Cn,q] = a(d) - n + O(n‘*é)] (for any 5 € (0,)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A}\,l Problem: if a value occurs < k times in first nt elements, 7 not complete
~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

¢ folklore result: random BSTs have logarithmic height w.h.p.
e can extend this to fringe-balanced trees ~~ nt-O(logn) = O0(n'"Flogn) to build T

~+ Expected Quicksort costs: [E[Cn,q] = a(d) - n + O(n‘*é)] (for any 5 € (0,)

e «a(d) = expected search cost in random T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Bounding the tree-growing part

[415151512131514121212151515/482151115141213141212[112[412121515121314121314[1131212111414141112[313]

Goal: ignore tree-growing for analysis. -+ x4 i~
to be chosen tree-growing part ~ T TLT searching part ~ Xs
~ Allow only first 't elements for tree growing.

A}\,l Problem: if a value occurs < k times in first nt elements, 7 not complete
~ Choose nr large enough to make those degenerate inputs rare.

e Require “many duplicates”: |E[X,] =Q(n®) | fore >0 Note: implies w = O (n'~¢)
Binomial tail bound

nr = [n'"f] with€ <e < non-degenerate w.h.p. (Pridegenerate] = o(n—<) for any ¢)

@ Costs to grow J: can't use large nt
e never morethan < nt-u ... but that is too coarse! mr -u can be close to n2)

¢ folklore result: random BSTs have logarithmic height w.h.p.
e can extend this to fringe-balanced trees ~~ nt-O(logn) = O0(n'"Flogn) to build T

~+ Expected Quicksort costs: [E[Cn,q] = a(d) - n + O(n‘*é)] (for any 5 € (0,)

e «a(d) = expected search cost in random T
@ error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

W N - O

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9/16

Search Costs in Saturated Trees

qv - depth(v)

M=

Recall: x(q) =

v=1

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

Recall: x(q) =

M=

qv - depths(v) T from inserting i.i.d. D(q) elements until saturation

v=1

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

distribution with prob. weights q1,..., qu

M=

Recall: x(q) = qv - depths(v) T from inserting i.i.d. D(q) elements until saturation

v=1

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

distribution with prob. weights q1,..., qu

M=

Recall: x(q) = qv - depths(v) T from inserting i.i.d. D(q) elements until saturation

v=1

Warmup: Ordinary BSTs (t = 0)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0)
':‘\', Old result: Allen & Munro 1978:

Self-Organizing Binary Search Trees

a(d) = 2Ho(d) + 1 with

- dig;
Hol@=) ——2—
1<ig<u It Tt

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0)
° Allen & Munro 1978:
L) . :
'.’ Old resu":. Self-Organizing Binary Search Trees

a(d) = 2Ho(d) + 1 with

- dig;
Hol@=) ——2—
1<ig<u It Tt

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0) Fringe-balanced trees (t > 1)
° . Allen & Munro 1978:
'.; Old resu":. Self-Organizing Binary Search Trees

a(d) = 2o () + 1 with

- dig;
Hol@=) ——2—
1<ig<u It Tt

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0) Fringe-balanced trees (t > 1)
é,‘,‘ Old result: o f_Orgar’::‘:;‘;‘ngfy“S"e’a‘:cgig @ probability of given value in root:

t=2

«(d) = 2Hq(q) + 1 with
d qiqj o EEE——
g =
1<igen i T T ooy

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

Recall: «(q) = qv - depthy(v)

M=

v=1

Warmup: Ordinary BSTs (t = 0)

Y Allen & Munro 1978:
L) . .
"’ Old resu":. Self-Organizing Binary Search Trees

distribution with prob. weights q1, . ..

ydu

T from inserting i.i.d. D(q) elements until saturation

Fringe-balanced trees (t > 1)

@ probability of given value in root:

. t=2
o(q) = 2Hq(d) +1 with o
. qdi9; _
Ho(d) = z — T
1<i<]’<uqi+”'+qj q i] pany || !
Gl q2 qs qa qs de q1 q2 qs qa qs qe

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

~ prob. that i inserted first among i,...j 22

2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0) Fringe-balanced trees (t > 1)
é,‘,‘ Old result: o f_Orgar’::‘:;‘;‘ngfy“S"e’a‘:cgig @ probability of given value in root:

t=2

a(d) = 2o () + 1 with

t=20
o dig; —
U{Q(q) - Z di _|_J_|_ q; BP=3)
1<i<j<u 't) 0 SRR | !
q 92 q3 qa 9s q qe
@ Proof sketch:
Sum prob. that is ancestor of j over all 1, j ~~ prob. that i inserted first among i,...j 22

ancestor <= i first inserted key among i,...,j

Q old approach does not work

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

u distribution with prob. weights q1,..., qu
Recall: x(q) = Z qv - depths(v) T from inserting i.i.d. D(q) elements until saturation
v=1
Warmup: Ordinary BSTs (t = 0) Fringe-balanced trees (t > 1)
é,‘,‘ Old result: o f_Orgar’::‘:;‘;‘ngfy“S"e’a‘:cgig @ probability of given value in root:
N - . t=2
o(q) = 2Hq(d) +1 with o _—
R qidg; _
Hq(d) = — SR
1@;@‘“ Tt 0 S 1 |
Gl q2 qs qa qs q 9e

@ Proof sketch:
Sum prob. that is ancestor of j over all 1, j ~~ prob. that i inserted first among i, ...j 22

ancestor <= i first inserted key among i,...,j
Q old approach does not work

@ In the same paper: Hq (q) < 3,(4)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10/ 16

Search Costs in Saturated Trees

Recall: «(q) = qv - depthy(v)

M=

v=1

Warmup: Ordinary BSTs (t = 0)

Y Allen & Munro 1978:
L) . .
"’ Old resu":. Self-Organizing Binary Search Trees

distribution with prob. weights q1, . ..

ydu

T from inserting i.i.d. D(q) elements until saturation

Fringe-balanced trees (t > 1)

@ probability of given value in root:

=2
o(d) = 2Hq(q) + 1 with - t
g qig; -
Hql(d) = —_— RS
1<;<uqi ot | BP=): |]

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

base e Shannon entropy

@ In the same paper: Hq (q) < J—(h‘f(a)

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

~» prob. that i inserted first among i, .. .j

old approach does not work

2017-06-19 10/ 16

Search Costs in Saturated Trees

M=

Recall: «(q) = qv - depthy(v)

v=1

Warmup: Ordinary BSTs (t = 0)

Y Allen & Munro 1978:
L) . .
"’ Old resu":. Self-Organizing Binary Search Trees

distribution with prob. weights q1, . ..

ydu

T from inserting i.i.d. D(q) elements until saturation

Fringe-balanced trees (t > 1)

@ probability of given value in root:

=2
o(q) = 2Hq(d) +1 with - \t‘ ‘
g qig; -
Hql(d) = — SR
lgégu qi + -+ 4q; | BP=); |]

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

base e Shajnon entropy
@ In the same paper: Hq(q) < Hjn(q)
base 2 entropy

~ (@) < 2In2-H4(G) +1,

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

~> prob. that i inserted first among 1, .. .j

old approach does not work

2017-06-19 10/ 16

Search Costs in Saturated Trees

Recall: «(q) = qv - depthy(v)

M=

v=1

Warmup: Ordinary BSTs (t = 0)
Allen & Munro 1978:

Self-Organizing Binary Search Trees

é,‘,‘ Old result:

distribution with prob. weights q1,..., qu

T from inserting i.i.d. D(q) elements until saturation

Fringe-balanced trees (t > 1)

@ probability of given value in root:

=2
o(d) = 2Hq(q) + 1 with - t
g qig; -
Hql(d) = —_— RS
1<;<uqi ot | BP=); |]

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

base e Shannon entropy
@ In the same paper: Hq(q) < J—(h‘f(a)
base 2 entropy
— a(d) < 2In2-HJ(G) +1,
only factor 21n 2 ~ 1.386 from optimal!

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

~> prob. that i inserted first among 1, .. .j

old approach does not work

2017-06-19 10/ 16

Search Costs in Saturated Trees

Recall: «(q) = qv - depthy(v)

M=

v=1

Warmup: Ordinary BSTs (t = 0)
Allen & Munro 1978:

Self-Organizing Binary Search Trees

é,‘,‘ Old result:

distribution with prob. weights q1,..., qu

T from inserting i.i.d. D(q) elements until saturation

Fringe-balanced trees (t > 1)

@ probability of given value in root:

=2
o(d) = 2Hq(q) + 1 with - t
g qig; -
Hql(d) = —_— RS
1<;<uqi ot | BP=); |]

@ Proof sketch:
Sum prob. that i is ancestor of j over all 1, j
ancestor <= i first inserted key among i,...,j

base e Shannon entropy
@ In the same paper: Hq(q) < J—(h‘f(a)

base 2 entropy

~ prob. that i inserted first among i,...j 22

old approach does not work

~ Try to generalize this! T

- @) < 2In2-3G3(@) +1,
only factor 21n 2 ~ 1.386 from optimal!

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

2017-06-19 10/ 16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

N[—=
o

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

N[—=
WIN
N[—=
W=

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

N[—=
WIN
N[—=
W=

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

<P = >P
q1 42 9394 95 ge

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

2
<P = >P .
e e o (@) = %(vnH,vzH;vj-%(zj)
J:

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

T R (AR TRVAT PR e e
@ @2 d3dads g6 (d) = 3(V1, H, 2)+; i” (Z;) 22:(‘11\)/7;1““,%)
J:

Z4 Z;

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

VNS
< pl/ > 2 Zi= (P)
/[j=pl >P \ L 5 ‘ Ly, A
"h' q2 'QS'CM' CI5lq6' e J—f(q) - %(V1,H,V2)+;VJ :}C(Z)) Zz:(q}\)/%,...»%)
Z Z, 5 =
@ Recurrence for search costs: «(d) = 1 + ZV]--cx(Z]-)
j=1
2017-06-19 11/16

Sebastian Wild Quicksort Is Optimal For Many Equal Keys

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

VNS
L (@) = TV V) 4 Y Vs g0z) D (e)
@ 42 43dads e (@) = J(Vi, H, 2)+; j - H(Z5) Z, = ()
Z Z, same shape! 5)=
@ Recurrence for search costs: «(d) = 1 + ZV]--cx(Z]-)
j=1
2017-06-19 11/16

Sebastian Wild Quicksort Is Optimal For Many Equal Keys

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,
qapr—1)

<P = >P R 2 Z]:(ﬂ,‘._, v
e W@ = ROV Y V) s)

'Q1' q2 'C|3 Q4 qs ' qde '
j=1
same shape!

Z; Z,
2
@ Recurrence for search costs: «(q) i 1+ ZV]--cx(Z]-) ~ [%(Vl,H,Vz) Vs. 1?J
j=1

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,
qapr—1)

<P = >P R 2 Z]:(ﬂ,‘._, v
e W@ = ROV Y V) s)

'Q1' q2 'C|3 Q4 qs ' qde '
j=1
same shape!

Z; Z,
2
@ Recurrence for search costs: «(q) i 1+ ZV]--cx(Z]-) ~ [%(Vl,H,Vz) Vs. 1?J
j=1

@ Technical Issues

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

<P |—p| >P . 2 Zy= (35 %)
@) = KOV Y V) o)

'Q1' q2 'C|3 Q4 qs ' qde '
j=1
same shape!

apP—1

Z4 Z;

2
@ Recurrence for search costs: «(q) i 1+ ZV]--cx(Z]-) ~ [%(Vl,H,Vz) Vs. 1?J
j=1

@ Technical Issues
© Pivot Pisrandom ~~ take expectations over P (and thus Vi 2, Z;).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

<P |—p| >P . 2 Zy= (35 %)
@) = KOV Y V) o)

'Q1' q2 'C|3 Q4 qs ' qde '
j=1
same shape!

apP—1

Z4 Z;

2
@ Recurrence for search costs: «(q) i 1+ ZV]--cx(Z]-) ~ [%(Vl,H,Vz) Vs. 1?J
j=1

@ Technical Issues
© Pivot Pisrandom ~~ take expectations over P (and thus Vi 2, Z;).

(2] E[J‘f]n(\/],H,Vz)] ~ E[g‘f[n(D,1 — D)} = Hyy1 —Hepr where D Z Beta(t + 1,t+ 1)
2017-06-19 11/16

Sebastian Wild Quicksort Is Optimal For Many Equal Keys

Aggregation of Entropy

@ One of the defining properties
of Shannon entropy: aggregation

—_
N[—=

WIN
W=

First partitioning step / Root of BST: Split into (<P}, (=P,

<P |p|| >P = Zy = (b0)
:q1: 92 :qs:q; q5:q6: - @ = J{(VHH’VZJ—F,ZVJ”:H(Z)‘) Zz:(%»---»{%)
Z; 7, same shape! 5 j=1
@ Recurrence for search costs: «(q) i 1+ ZV]--cx(Z]-) ~ [%(Vl,H,Vz) Vs. 1?J

@ Technical Issues =
© Pivot Pisrandom ~~ take expectations over P (and thus Vi 2, Z;).

@ E[H,(Vi,H,V2)] = E[H,(D,1=D)] = Hyp1 —Heg where D 2 Beta(t + 1,t+ 1)

but not an inequality in either direction

Quicksort Is Optimal For Many Equal Keys 2017-06-19 11/16

Sebastian Wild

Entropy Bounds for Search Costs

~ ofd) = ¢ - H(q) does not seem to hold for any constant c

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12/ 16

Entropy Bounds for Search Costs

~ ofd) = ¢ - H(q) does not seem to hold for any constant c

@ But we can show

¢ -H(g) +d
¢/ -H(dq) — d’

o Ol Aol

for family of constants (¢, d) and (c¢’,d’).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12/ 16

Entropy Bounds for Search Costs

~ a(qd) = c-H(q) does not seem to hold for any constant c

ZOV T T T |
@ But we can show Q o8 <15 - s (H) 41777
N N [uPPerbO t=1 N
(@) < ¢ -H(G) +d 10 nd
xg > ¢ -H(G) —d’ Z
T
for family of constants (¢, d) and (c¢’,d’).
—10}+
20k

1 1
1 1.25 1.5 1.75
rel. difference of ¢ and o

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12/ 16

Entropy Bounds for Search Costs

~ a(qd) = c-H(q) does not seem to hold for any constant c

ZOV T T T |
@ But we can show Q o8 <15 - oy () 41777
. . L Upper g, t=1 |
(@) < ¢ -H(G) +d 10 “nd
xg > ¢ -H(G) —d’ Z
i
for family of constants (¢, d) and (c¢’,d’).
—10}+
@ Always have ¢/ < o < ¢ where
In2 20k

Xy = 77—
Hit1 —Hi

rel. difference of ¢ and o

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12/ 16

Entropy Bounds for Search Costs

~ a(d) = ¢ - H(d) does not seem to hold for any constant ¢
@ But we can show 20F * x —

o(d) < 1.5 a3 (d) + 1777
t

x(d) < ¢ -H(G) + 10} 2PPer boung =1
> d) — 4’ =
xg > ¢ -H(@) —d g
_H
for family of constants (¢, d) and (c¢’,d’).
—10}+
@ Always have ¢/ < o < ¢ where
In2 20k

1.5
1
1 1.25 1.5 1.75
rel. difference of ¢ and o

Xy = 77—
Hit1 —Hi

~+ Asymptotically matching values for ¢ and ¢’

~ [oc(q’) = ok -Hl(d) + O(j{(q’)tiﬁlog(%(ﬁ)))J

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12/ 16

Results in the i.i.d. Model

@ Time to put the pieces together!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13/16

Results in the i.i.d. Model

@ Time to put the pieces together!

Separation Theorem:
Quicksort costs

e in thei.i.d. model m@

e with “many duplicates”
(Q(n®) duplicates of each value in expectation)

are given by (asn — oo, forany & € (0, ¢))

[]E[Cn)q] = a(d) - n £+ O(n]_é)]

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13/16

Results in the i.i.d. Model

@ Time to put the pieces together!

Separation Theorem:
Quicksort costs

e in thei.i.d. model m@

e with “many duplicates”
(Q(n®) duplicates of each value in expectation)

are given by

[]E[Cn)q] = a(d) - n £+ O(n]_é)]

(asn — oo, forany 6 € (0, ¢))

Sebastian Wild

Quicksort Is Optimal For Many Equal Keys

® Average search costs
in saturated k-fringe-balanced trees:

(as H — o0)

[oc(?]) = o - H + O(}Ct% IogJ-C)J

o H =73q4(d)
In2

o= ————
Hi11 — Higa

2017-06-19 13/16

Results in the i.i.d. Model

@ Time to put the pieces together!

® Separation Theorem: ® Average search costs
Quicksort costs in saturated k-fringe-balanced trees:
e in the i.i.d. model m@ (as H — o0)
° with.”mar?y duplicates” | . [oc(ﬁ) Y T O(}Ct% |0g9{)J
(Q(n®) duplicates of each value in expectation)
are given by (asm — oo, forany & € (0,¢)) o H=%Huq(4d)
In2
E[C ~]:oc*-nj:0n]_5J ° oy =
[] (@) () « Hir1 — Heps

Quicksort Costs (i.i.d. model)

~ Under the assumptions above, we have for any § € (0, +15)
E[Cn,g] = oaHia(d) -n £ O((H(G)'~° +1)n).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13/16

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

WIN =—- O

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13/16

Back to the Multiset Model

, »
How about the multiset model? _X)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14/ 16

Back to the Multiset Model

, »
How about the multiset model? _X)

—

L — —
-,O\- Many duplicates ~~ profile X concentrated around E[X] = dn

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14/ 16

Back to the Multiset Model

How about the multiset model? _X)')
L - N
-,O\- Many duplicates ~ profile X concentrated around E[X] = dn

@ Replace multiset model with profile X by i.i.d. model with § = X/n

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14/ 16

Back to the Multiset Model

How about the multiset model? _X)')
L - N
-,O\- Many duplicates ~ profile X concentrated around E[X] = dn

@ Replace multiset model with profile X by i.i.d. model with § = X/n

© Use Chernoff bounds to bound difference between costs.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14/ 16

Back to the Multiset Model

How about the multiset model? _X)')
L - N
-,O\- Many duplicates ~ profile X concentrated around E[X] = dn

@ Replace multiset model with profile X by i.i.d. model with § = X/n
© Use Chernoff bounds to bound difference between costs.
~+ Need Chernoff bound for multinomial variables.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14/ 16

Back to the Multiset Model

How about the multiset model? _X)')
L - N
-,O\- Many duplicates ~ profile X concentrated around E[X] = dn

@ Replace multiset model with profile X by i.i.d. model with § = X/n
© Use Chernoff bounds to bound difference between costs.
~+ Need Chernoff bound for multinomial variables.

The Annals of Statistics
1983, Vol. 11, No. 3, 896-904

THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE
CONVERGENCE IN L, FOR KERNEL DENSITY ESTIMATES'

By Luc DEVROYE

McGill University
Let f be a density on R?, and let f, be the kernel estimate of f,
falx) = (nA)™" Tiey K((x — Xi)/h)

where h = h, is a sequence of positive numbers, and K is an absolutely
integrable functlon w1th] K(x) dx = 1.Let J, = [| fulx) — f(x) | dx. We show

Sebastian Wild Qulcksort Is Optlmal For Many Equal Keys 2017-06-19

Back to the Multiset Model

How about the multiset model? _X)')
L — N
-,O\- Many duplicates ~~ profile X concentrated around E[X] = dn
@ Replace multiset model with profile X by i.i.d. model with § = X/n
© Use Chernoff bounds to bound difference between costs.
~+ Need Chernoff bound for multinomial variables.

The Annals of Statistics
1

LEMMA 3. (A multinomial distribution inequality). Let (X, ---, X:) be a multino-
mial (n, p1, - - -, px) random vector. For all ¢ € (0, 1) and all k satisfying k/n < £*/20, we
have

P(3E, | X; — E(X;) | > ne) < 3 exp(—ne?/25).

McGull University
Let f be a density on R?, and let f, be the kernel estimate of f,
falx) = (nA)™" Tiey K((x — Xi)/h)

where h = h, is a sequence of positive numbers, and K is an absolutely
integrable functlon w1th] K(x) dx = 1.Let J, = [| fulx) — f(x) | dx. We show

Sebastian Wild Qulcksort Is Optlmal For Many Equal Keys 2017-06-19

Back to the Multiset Model

. ~
How about the multiset model? _}_)

\ ' 4 — =
-O\- Many duplicates ~- profile X concentrated around E[X] = gn

’

© Replace multiset model with profile X by i.i.d. model with § =X/n
©® Use Chernoff bounds to bound difference between costs.
~+ Need Chernoff bound for multinomial variables.

The Annals of Statistics

LEMMA 3. (A multinomial distribution inequality). Let (X, ---, X;) be a multino-
mial (n, p1, - -+, pr) random vector. For all ¢ € (0, 1) and all k satisfying k/n < €*/20, we
have

P(3%, | X; — E(X;) | > ne) < 3 exp(—ne?/25).

McGull Unwversity

Same result holds for multiset model

with “many duplicates”, i.e., x, = Q(n°®).

2017-06-19

Sebastian Wild) Quicksort Is Optimal For Many Equal Keys

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

Sebastian Wild

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley: J

W
1) with u = O(n'—¢) \Fé

Median-of-k Quicksort approaches lower bound for k — oo.

@ Not in this talk: For uniform § = (, . ..,% g

e better error bounds

Dual-Pivot Quicksort and Beyond

Sebastian Wild

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley: “§%
Median-of-k Quicksort approaches lower bound for k — oo. \ €
e Not in this talk: For uniform q = (%, ey %) withu =0(n'¢) 3 é i;‘;-"

e better error bounds

Dual-Pivot Quis

e extension for multiway partitioning

Sebastian Wild

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley: J

W
1) with u = O(n'—¢) \Fé

Median-of-k Quicksort approaches lower bound for k — oo.

@ Not in this talk: For uniform § = (, . ..,% g

e better error bounds

Dual-Pivot Quicksort and Beyond

e extension for multiway partitioning

Sebastian Wild

Open Problems

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

o better error bounds
e extension for multiway partitioning

Sebastian Wild

Open Problems

1

@ Get rid of “many duplicates” restriction; n'~¢ seems (to me) best possible so that

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

o better error bounds
e extension for multiway partitioning

Sebastian Wild

Open Problems

1

@ Get rid of “many duplicates” restriction; n'~¢ seems (to me) best possible so that

e inputs are non-degenerate w. h.p.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

o better error bounds
e extension for multiway partitioning

Sebastian Wild

Open Problems

1=¢ seems (to me) best possible so that

@ Get rid of “many duplicates” restriction; n
e inputs are non-degenerate w. h.p.

e tree-building costs are still negligible

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

o better error bounds
e extension for multiway partitioning

Sebastian Wild

Open Problems

1=¢ seems (to me) best possible so that

@ Get rid of “many duplicates” restriction; n
e inputs are non-degenerate w. h.p.
e tree-building costs are still negligible

o difference between i.i.d. model and multiset model is negligible

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Conclusion

Findings
@ First analysis of median-of-k Quicksort on equal keys . .. for “many duplicates”.
~ Same relative speedup as for random permutations.

@ Partial Answer to conjecture of Sedgewick & Bentley:

Median-of-k Quicksort approaches lower bound for k — oo.

L) withu =0O(n'—¢)

@ Not in this talk: For uniform § = (, . ..,%

o better error bounds
e extension for multiway partitioning

Sebastian Wild

Open Problems

1=¢ seems (to me) best possible so that

@ Get rid of “many duplicates” restriction; n
e inputs are non-degenerate w. h.p.
e tree-building costs are still negligible
o difference between i.i.d. model and multiset model is negligible

e the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15/16

Sebastian Wild

{
3 Sovere;
— [e]
2
S=S==
-_==== —
‘-.‘ﬁ‘- \ —
i — G e
E— F F W
— \,-.‘ —r—
=]
=

Quicksort Is Optimal For Many Equal Keys

/
1]] .
,m't'/r
]
—’
=

2017-06-19

16/ 16

Icons made by Freepik and Gregor Cresnar from www.flaticon.com.

Sebastian Wild Quicksort Is

imal For Many Equal Keys 2017-06-19 17/ 16

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/gregor-cresnar
www.flaticon.com

	Don't we know everything about Quicksort by now?
	Setup
	Previous work on equal keys
	Sedgewick's analysis for classic Quicksort
	The conjecture of Sedgewick and Bentley
	Quicksort & search trees
	Fringe-balanced trees
	Tree-growing and searching
	Bounding the tree-growing part
	Search Costs in Saturated Trees
	Aggregation of Entropy
	Entropy Bounds for Search Costs
	Results in the i. i. d. Model
	Back to the Multiset Model
	Conclusion
	

