Median-of-k Quicksort Is Optimal For Many Equal Keys

originates from joint work with Martin Aumüller, Martin Dietzfelbinger, Conrado Martínez, and Markus Nebel

AofA 2017

28th International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms
$0 / 16$

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort
Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs
- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs
variance

- but: most results consider random permutations as input!
- partly justified: we can (shoúld!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort
Type of result Analysis Techniques Algorithm variants Cost Measures
expected costs
\quad variance
tail inequalities
- but: most results consider random permutations as input!
- partly justified: we can (shoúld!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs
        variance
    tail inequalities
limit distributions
```

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal Keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
    Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs
        variance
    tail inequalities
    limit distributions
(semi-)local limit laws
```

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
    Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs telescoping recurrences
        variance
    tail inequalities
    limit distributions
(semi-)local limit laws
```

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
    Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs telescoping recurrences
    singularity analysis
    variance
    tail inequalities
    limit distributions
(semi-)local limit laws
```

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
    Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs telescoping recurrences
    singularity analysis
    Euler differential eq.
    tail inequalities
    limit distributions
(semi-)local limit laws
```

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences		
variance	singularity analysis		
tail inequalities	Euler differential eq.		
limit distributions			
(semi-)local limit laws			

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

```
    Type of result Analysis Techniques Algorithm variants Cost Measures
    expected costs telescoping recurrences
    singularity analysis
    Euler differential eq.
        Martingales
    contraction method
limit distributions
(semi-)local limit laws
```

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants
expected costs Measures		
variance	telescoping recurrences	
singularity analysis		
tail inequalities	Euler differential eq.	Martingales
limit distributions	contraction method	
(semi-)local limit laws	branching processes	

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort
$\left.\begin{array}{ccc}\text { Type of result } & \text { Analysis Techniques } & \text { Algorithm variants } \\ \text { expected costs } & \text { Colescoping recurrences } \\ \text { singularity analysis }\end{array}\right]$
- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences singularity analysis	pivot sampling	
variance	Euler differential eq. Martingales		
tail inequalities	contraction method		
limit distributions	branching processes		
(semi-)local limit laws			

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences singularity analysis	pivot sampling	
variance	Euler differential eq.	Insertionsort cutoff	
tail inequalities	Martingales contraction method		
limit distributions	branching processes		
(semi-)local limit laws			

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants
expected costs	telescoping recurrences	pivot sampling
variance	singularity analysis	Insertionsort cutoff
tail inequalities	Martingales	multiway partitioning
limit distributions	contraction method	
(semi-)local limit lawsbranching processes continuous master theorem		

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	
variance	singularity analysis	Euler differential eq.	Insertionsort cutoff
maltiway partitioning			

- but: most results consider random permutations as input!
- partly justified: we can (should!') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs variance tail inequalities	telescoping recurrences singularity analysis Euler differential eq. Martingales	pivot sampling Insertionsort cutoff multiway partitioning	
limit distributions	contraction method	Quickselect	
(semi-)local limit laws	branching processes ontinuous master theorem	constant space	

- but: most results consider random permutations as input!
- partly justified: we can (should') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs variance tail inequalities	telescoping recurrences singularity analysis Euler differential eq. Martingales	pivot sampling Insertionsort cutoff multiway partitioning	key comparisons
limit distributions	contraction method	Quickselect	
(semi-)local limit laws	branching processes	constant space	

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	
limit distributions	contraction method (semi-)local limit laws	Quickselect branching processes	constant space

- but: most results consider random permutations as input!
- partly justified: we can (should') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	swaps
limit distributions	contraction method (semi-)local limit laws	Quickselect branching processes	constant space

- but: most results consider random permutations as input!
- partly justified: we can (should') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort
$\left.\begin{array}{cccc}\text { Type of result } & \text { Analysis Techniques } & \text { Algorithm variants } & \text { Cost Measures } \\ \text { expected costs } & \text { telescoping recurrences } & \text { pivot sampling } & \text { key comparisons } \\ \text { variance } & \text { singularity analysis } & \text { Insertionsort cutoff } & \text { symbol comparisons } \\ \text { tail inequalities } & \begin{array}{c}\text { Martingales }\end{array} & \text { multiway partitioning } & \text { swaps } \\ \text { limit distributions } & \begin{array}{c}\text { contraction method } \\ \text { branching processes }\end{array} & \begin{array}{c}\text { Quickselect } \\ \text { constant space }\end{array} & \text { scanned elements } \\ \text { (semi-)local limit laws } & \\ & \text { continuous master theorem }\end{array}\right)$
- but: most results consider random permutations as input!
- partly justified: we can (should') randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	swaps
limit distributions	contraction method branching processes	Quickselect (semi-)local limit laws continuous master theorem space	scanned elements
constanch misses			

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	swaps
limit distributions	contraction method branching processes	Quickselect (semi-)local limit laws continuous master theorem space	scanned elements
constanch misses			

- but: most results consider random permutations as input!
- partly justified: we can (should!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	swaps
limit distributions	contraction method branching processes	Quickselect constant space	scanned elements
(semi-)local limit laws	branch misses		

- but: most results consider random permutations as input!
- partly justified: we can (shoúld!) randomize Quicksort, every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis Euler differential eq.	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales	multiway partitioning	swaps
limit distributions	contraction method branching processes	Quickselect	scanned elements
(semi-)local limit lawsconstant space	branch misses		

- but: most results consider random permutations as input!
- partly justified: we can (shounld!) randomize Quicksort, \rightsquigarrow every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Don't we know everything about Quicksort by now?

- Extensive literature and results on Quicksort

Type of result	Analysis Techniques	Algorithm variants	Cost Measures
expected costs	telescoping recurrences	pivot sampling	key comparisons
variance	singularity analysis	Insertionsort cutoff	symbol comparisons
tail inequalities	Martingales eq.	multiway partitioning	swaps
limit distributions	contraction method branching processes	Quickselect	scanned elements
(semi-)local limit lawsconstant space	branch misses		

- but: most results consider random permutations as input!
- partly justified: we can (shounld!) randomize Quicksort, \rightsquigarrow every input appears randomly ordered
- Catch: Elements with equal keys won't go away!

Setup

Assumptions:

(1) Input:

Multiset Model:

Random permutation $\mathrm{UL}_{1}, \ldots, \mathrm{U}_{n}$ of fixed multiset
(B) Discrete i.i.d. Model:
$\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v}$
$\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

$\underbrace{$	$<\mathrm{P}$	$\mathrm{P} P \mathrm{P} \mid \mathrm{P}$	$>\mathrm{P}$
recursive call			}$_{\text {recursive call }}$

(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:
 (1) Input: (A)

 Multiset Model:
 Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset x_{1}, \ldots, x_{u} number of occurrences of values $1, \ldots, u$
 (B) Discrete i.i.d. Model:
 $\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v}$ $\overrightarrow{\mathrm{q}}=\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{u}\right)$ a fixed universe distribution

(2) fat-pivot partitioning

(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:
 (1) Input: (A)

 Multiset Model:
 Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset x_{1}, \ldots, x_{u} number of occurrences of values $1, \ldots, u$ profile \vec{x} of input

(2) fat-pivot partitioning

(3) Cost: \# ternary comparisons

Median-of- $(2 t+1)$ Quicksort:

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset x_{1}, \ldots, x_{u} number of occurrences of values $1, \ldots, u$
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v}$
$\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset
$x_{1}, \ldots \chi_{\text {profile }} \vec{x}$ of input
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \leadsto \operatorname{random}$ profile $\overrightarrow{\mathrm{X}} \stackrel{\underline{p}}{\underline{2}} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots \underset{\text { profile }}{ } \vec{\chi}$ of input x_{u} number of
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random}$ profile $\vec{X} \underline{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

3 Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:

(1) Input: (A)

(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random}$ profile $\vec{X} \underline{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

subproblems of same type, (restricted to a sub-universe)
3 Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots \chi_{\text {profile }} \vec{x}$ of input
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random}$ profile $\overrightarrow{\mathrm{X}} \stackrel{\underline{p}}{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

\rightsquigarrow subproblems of same type, (restricted to a sub-universe)
(3) Cost: \# ternary comparisons

Setup

Assumptions:

(1) Input: (A)

Multiset ModeI:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots \chi_{\text {profile }} \vec{x}$ of input
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random} \operatorname{profile} \overrightarrow{\mathrm{X}} \stackrel{\underline{p}}{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

\rightsquigarrow subproblems of same type, (restricted to a sub-universe)
(3) Cost: \# ternary comparisons

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots \chi_{\text {profile }} \vec{x}$ of input
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random} \operatorname{profile} \overrightarrow{\mathrm{X}} \stackrel{\underline{p}}{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

\rightsquigarrow subproblems of same type, (restricted to a sub-universe)
(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Setup

Assumptions:

(1) Input: (A)

Multiset Model:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots \chi_{\text {profile }} \vec{x}$ of input
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random} \operatorname{profile} \overrightarrow{\mathrm{X}} \stackrel{p}{=} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

\rightsquigarrow subproblems of same type, (restricted to a sub-universe)
(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

- median-of- $(2 t+1)$

Example:
$\mathrm{t}=3$

Setup

Assumptions:

(1) Input: (A)

Multiset ModeI:

Random permutation $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ of fixed multiset $x_{1}, \ldots x_{\text {profile }} \vec{x}$ of input \quad occurrences of values $1, \ldots, u$
(B) Discrete i.i.d. Model:
8. $\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{n}}$ i.i.d. with $\operatorname{Pr}\left[\mathrm{U}_{1}=v\right]=\mathrm{q}_{v} \leadsto \rightsquigarrow \operatorname{random} \operatorname{profile} \overrightarrow{\mathrm{X}} \xlongequal{\underline{p}} \operatorname{Mult}(n, \overrightarrow{\mathrm{q}})$ $\vec{q}=\left(q_{1}, \ldots, q_{u}\right)$ a fixed universe distribution
(2) fat-pivot partitioning

- all duplicates of pivots removed

\rightsquigarrow subproblems of same type, (restricted to a sub-universe)
(3) Cost: \# ternary comparisons

Median-of-(2t+1) Quicksort:

Example:
$\mathrm{t}=3$

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK \dagger

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on the average number of comparisons needed by any Quicksort program when equal keys are present. It is shown that, of the three strategies which have been suggested for dealing with equal keys, the method of always stopping the scanning pointers on keys equal to the partitioning element performs best.

Key words. analysis of algorithms, equal keys, Quicksort, sorting

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)
- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys This is basically all literature on analysis of Quicksort with equal keys!

QUICKSORT IS OPTIMAL

Abstract. This pa when equal keys are li the average number of is shown that, of the method of always stop best.

Robert Sedgewick Jon Bentley

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys
\square

SIAM J. COMPUT. Vol. 6, No. 2, June 1977

An Analysis of Binary Search Trees Formed from Sequences of Nondistinct Keys

WILLIAM H. BURGE
IBM Thomas J. Watson Research Center, Yorktown Heights, New York
abstract. The expected depth of each key in the set of binary search trees formed from all sequences composed from a multiset $\left\{p_{1} \cdot 1, p_{2} \cdot 2, p_{3} \cdot 3, \cdots, p_{n} \cdot n\right\}$ is obtained, and hence the expected weight of such trees. The expected number of left-to-right local minima and the expected number of cycles in sequences composed from a multiset are then deduced from these results.

KEY words and phrases: binary search trees, multiset

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Keys
- Sedgewick \& Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

- Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys
- Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

Previous work on equal keys

Rather little is known!

- Sedgewick 1977: Quicksort on Equal Kevs
- Sedgewick \& Bentley 2002: Quicksd A bit more on BSTs:
- Burge 1976: An Analysis of BSTs Forme
- Kemp 1996: BSTs constructed from non
- Archibald \& Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

Sedgewick's analysis for classic Quicksort

Classic Quicksort:

Sedgewick's analysis for classic Quicksort

Classic Quicksort:

Analysis of Quicksort with equal keys

1. Define $C\left(x_{1}, \ldots, x_{n}\right) \equiv C(1, n)$ to be the mean \# compares to sort the file

$$
C(1, n)=N-1+\frac{1}{N} \sum_{1 \leq j \leq n} x_{j}(C(1, j-1)+C(j+1, n))
$$

2. Multiply both sides by $N=x_{1}+\ldots+x_{n}$

$$
N C(1, n)=N(N-1)+\sum_{1 \leq j \leq n} x_{j} C(1, j-1)+\sum_{1 \leq j \leq n} x_{j} C(j+1, n)
$$

3. Subtract same equation for x_{2}, \ldots, x_{n} and let $D(1, n) \equiv C(1, n)-C(2, n)$

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)=x_{1}^{2}-x_{1}+2 x_{1}\left(x_{2}+\ldots+x_{n}\right)+\sum_{2 \leq j \leq n} x_{j} D(1, j-1)
$$

4. Subtract same equation for x_{1}, \ldots, x_{n-1}

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)-\left(x_{1}+\ldots+x_{n-1}\right) D(1, n-1)=2 x_{1} x_{n}+x_{n} D(1, n-1)
$$

Sedgewick's analysis for classic Quicksort

Classic Quicksort:

Analysis of Quicksort with equal keys

1. Define $C\left(x_{1}, \ldots, x_{n}\right) \equiv C(1, n)$ to be the mean \# compares to sor

$$
C(1, n)=N-1+\frac{1}{N} \sum_{1 \leq j \leq n} x_{j}(C(1, j-1)+C(j+1, n))
$$

2. Multiply both sides by $N=x_{1}+\ldots+x_{n}$

$$
N C(1, n)=N(N-1)+\sum_{1 \leq j \leq n} x_{j} C(1, j-1)+\sum_{1 \leq j \leq n} x_{j} C(j+1, n)
$$

3. Subtract same equation for x_{2}, \ldots, x_{n} and let $D(1, n) \equiv C(1, n)$ -

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)=x_{1}^{2}-x_{1}+2 x_{1}\left(x_{2}+\ldots+x_{n}\right)+\sum_{2 \leq j \leq n} x_{j} D(1, j
$$

4. Subtract same equation for x_{1}, \ldots, x_{n-1}

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)-\left(x_{1}+\ldots+x_{n-1}\right) D(1, n-1)=2 x_{1} x_{n}+x_{n} D(1,
$$

Analysis of Quicksort with equal keys (cont.)

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)-\left(x_{1}+\ldots+x_{n-1}\right) D(1, n-1)=2 x_{1} x_{n}+x_{n} D(1, n-1)
$$

5. Simplify, divide both sides by $N=x_{1}+\ldots+x_{n}$

$$
D(1, n)=D(1, n-1)+\frac{2 x_{1} x_{n}}{x_{1}+\ldots+x_{n}}
$$

6. Telescope (twice)

$$
C(1, n)=N-n+\sum_{1 \leq k<j \leq n} \frac{2 x_{k} x_{j}}{x_{k}+\ldots+x_{j}}
$$

THEOREM. Quicksort (with 3-way partitioning, randomized) uses $N-n+2 Q N$ compares (where $Q=\sum_{1 \leq k<j \leq n} \frac{p_{k} p_{j}}{p_{k}+\ldots+p_{j}}$, with $p_{i}=x_{i} / N$) to sort an $\left(x_{1}, \ldots, x_{n}\right)$-file, on the average .

Sedgewick's analysis for classic Quicksort

Classic Quicksort: Expected comparisons expressible exactly.

Analysis of Quicksort with equal keys

1. Define $C\left(x_{1}, \ldots, x_{n}\right) \equiv C(1, n)$ to be the mean \# compares to sor

$$
C(1, n)=N-1+\frac{1}{N} \sum_{1 \leq j \leq n} x_{j}(C(1, j-1)+C(j+1, n))
$$

2. Multiply both sides by $N=x_{1}+\ldots+x_{n}$

$$
N C(1, n)=N(N-1)+\sum_{1 \leq j \leq n} x_{j} C(1, j-1)+\sum_{1 \leq j \leq n} x_{j} C(j+1, n)
$$

Analysis of Quicksort with equal keys (cont.)

$$
\left(x_{1}+\ldots+x_{n}\right) D(1, n)-\left(x_{1}+\ldots+x_{n-1}\right) D(1, n-1)=2 x_{1} x_{n}+x_{n} D(1, n-1)
$$

5. Simplify, divide both sides by $N=x_{1}+\ldots+x_{n}$

$$
D(1, n)=D(1, n-1)+\frac{2 x_{1} x_{n}}{x_{1}+\ldots+x_{n}}
$$

6. Telescope (twice)
7. $54 \quad 1 \leq k<j \leq n \cdots \cdots \cdots \cdot \cdots$
8. S

THEOREM. Quicksort (with 3-way partitioning, randomized) uses
$N-n+2 Q N$ compares (where $Q=\sum_{1 \leq k<j \leq n} \frac{p_{k} P_{j}}{p_{k}+\ldots+p_{j}}$, with $p_{i}=x_{i} / N$)
to sort an $\left(x_{1}, \ldots, x_{n}\right)$-file, on the average .

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C / N is always within a constant factor of the entropy H
lower bound: $\mathrm{C}>\mathrm{NH}-\mathrm{N} \quad$ (information theory)
upper bound: $\mathrm{C}<2 \ln 2 \mathrm{NH}+\mathrm{N}$ (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, $\mathrm{C} / \mathrm{N} \rightarrow \mathrm{H}$ as sample size increases.

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C / N is always within a constant factor of the entropy H
lower bound: $\mathrm{C}>\mathrm{NH}-\mathrm{N} \quad$ (information theory)
upper bound: $\mathrm{C}<2 \ln 2 \mathrm{NH}+\mathrm{N}$ (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, $\mathrm{C} / \mathrm{N} \rightarrow \mathrm{H}$ as sample size increases.

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C / N is always within a constant factor of the entropy H
lower bound: $\mathrm{C}>\mathrm{NH}-\mathrm{N} \quad$ (information theory)
upper bound: $\mathrm{C}<2 \ln 2 \mathrm{NH}+\mathrm{N}$ (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, $\mathrm{C} / \mathrm{N} \rightarrow \mathrm{H}$ as sample size increases.

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C / N is always within a constant factor of the entropy H
lower bound: $\mathrm{C}>\mathrm{NH}-\mathrm{N} \quad$ (information theory)
upper bound: $\mathrm{C}<2 \ln 2 \mathrm{NH}+\mathrm{N}$ (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling, $\mathrm{C} / \mathrm{N} \rightarrow \mathrm{H}$ as sample size increases.

* subject to some assumptions

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

Quicksort \& search trees

Classic Fact:

- Recursion Tree of Quicksort = Naturally grown BST from input Comparisons in Quicksort = Comparisons to built BST Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort \& search trees

Classic Fact:

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
- How about inputs with duplicates?

Quicksort \& search trees

Classic Fact:

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 3 | 3 | 2 | | | | 5 | 5 |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 3 | 3 | 2 | 4 | 4 | 4 | 5 | 5 |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

4	2	1	3	3	5	4	4	3	5	2
			1	3	3	3	2	4	4	4

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

4	2	1	3	3	5	4	4	3	5	2
2	1	3	3	3	2	4	4	4	5	5

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 3 | 3 | 2 | 4 | 4 | 4 | 5 | 5 |
| 1 | 2 | 2 | 3 | 3 | 3 | | | | 5 | 5 |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 3 | 3 | 2 | 4 | 4 | 4 | 5 | 5 |
| 1 | 2 | 2 | 3 | 3 | 3 | | | | | |
| | | | | | 5 | 5 | | | | |
| | | | 3 | 3 | 3 | | | | | |

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort = Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

$$
\begin{array}{llllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 \\
\hline
\end{array}
$$

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree
(4) $21 \begin{array}{llllllll} & 1 & 3 & 3 & 5 & 4 & 4 & 3\end{array} 5$
4)

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST

$$
=\text { Comparisons to search input in final BST }
$$

- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

$$
\text { (2) } 1 \begin{array}{lllllllll}
& 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree
(3) 3 5 $54 \begin{aligned} & 4 \\ & 4\end{aligned} 3$

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
$=$ Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

4	2	1	3	3	5	4	4	3	5	2

Binary Search Tree
2

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Equivalence holds also with duplicates.

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Equivalence holds also with duplicates.

Quicksort \& search trees

Classic Fact: (without duplicates)

- Recursion Tree of Quicksort = Naturally grown BST from input
\rightsquigarrow Comparisons in Quicksort $=$ Comparisons to built BST
= Comparisons to search input in final BST
- How about inputs with duplicates?

Quicksort (Fat-Pivot)

Binary Search Tree

$$
42213135443512
$$

\rightsquigarrow Equivalence holds also with duplicates.
This was only basic Quicksort ... how about pivot sampling?

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

4	2	1	3	3	5	4	4	3	5	2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

| 4 | 2 | 1 | 3 | 3 | 5 | 4 | 4 | 3 | 5 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

4	2	1	3	3	5	4	4	3	5	2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

2	1	2	3	3	3	4	5	4	4	5

$$
(t=2)
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

4	2	1	3	3	5	4	4	3	5	2

Insertionsort

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2 \\
\hline
\end{array}
$$

$$
\begin{array}{|lllllll|llllll|}
\hline 2 & 1 & 2 & 3 & 3 & 3 & 4 & 5 & 4 & 4 & 5 \\
\hline
\end{array}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

$$
(t=2)
$$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|llll|llllll|}
\hline 2 & 1 & 2 & 3 & 3 & 3 & 4 & 5 & 4 & 4 & 5 \\
\hline
\end{array}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree
(2) $1 \begin{array}{lllllllll} & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2\end{array}$

42

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

421

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
(3) 35154 c c c c
$$

4213

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{aligned}
& \begin{array}{llllllll}
3 & 5 & 4 & 4 & 3 & 5 & 2 \\
4 & 2 & 1 & 3 & 3 \\
\hline
\end{array} \\
& \\
& \hline
\end{aligned}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree
$\begin{array}{llllll}5 & 4 & 4 & 3 & 2\end{array}$

213	34

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{llllll}
5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{llllll}
5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
(5) 44315
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\text { (4) } 4 \quad 3 \quad 5 \quad 2
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree
(4) $3 \quad 2$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
352
$$

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree
(5) 2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree

2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree
2

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

Median-of-5 Quicksort

4	2	1	3	3	5	4	4	3	5	2

$$
(t=2)
$$

5-Fringe-Balanced Tree
2

Correspondence extends to

Analyze search trees instead of Quicksort.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Correspondence extends to

- Pivot Sampling (any scheme, not only median)
- (s-way Partitioning \rightsquigarrow s-ary search trees) \longleftarrow not today

Analyze search trees instead of Quicksort.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Correspondence extends to

- Pivot Sampling (any scheme, not only median)

[^0]Analyze search trees instead of Quicksort.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Correspondence extends to

- Pivot Sampling (any scheme, not only median)
- (s-way Partitioning $\rightsquigarrow s$-ary search trees) \leftarrow not today

Analyze search trees instead of Quicksort.

Fringe-balanced trees

k-Fringe-Balanced Search Trees:

- Leaves buffer $k=2 t+1$ elements.
- If buffer is full, leaf is split \rightsquigarrow new internal node with chosen pivot.

$$
(t=2)
$$

5-Fringe-Balanced Tree

$$
\begin{array}{lllllllllll}
4 & 2 & 1 & 3 & 3 & 5 & 4 & 4 & 3 & 5 & 2
\end{array}
$$

\rightsquigarrow Correspondence extends to

- Pivot Sampling (any scheme, not only median)
- (s-way Partitioning $\rightsquigarrow s$-ary search trees) \longleftarrow not today
\rightsquigarrow Analyze search trees instead of Quicksort.

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $X=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
direct analysis no simpler than for Quicksort

4	

Observation: \mathcal{T} becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}}$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
direct analysis no simpler than for Quicksort

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2	3	3

Observation: \mathcal{T} becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
profile X_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)

direct analysis no simpler than for Quicksort

| 4 | 5 | 5 | 5 | 2 | 3 | 5 | 4 | 2 | 2 | 2 | 5 | 5 | 5 | 4 | 2 | 5 | 1 | 5 | 4 | 2 | 3 | 4 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 5 | 5 | 2 | 3 | 4 | 2 | 3 | 4 | 1 | 3 | 2 | 2 | 1 | 4 | 4 | 4 | 1 | 2 | 3 | 3 |
| :--- |

Observation: \mathcal{T} becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
profile \bar{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \bar{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

- ?

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

- !

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

- ! 8 §

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

- :

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2

- ? $\therefore \therefore$

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2	3

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

4	5	5	5	2	3	5	4	2	2	2	5	5	5	4	2	5	1	5	4	2	3	4	2	2	1	2	4	2	2	5	5	2	3	4	2	3	4	1	3	2	2	1	4	4	4	1	2	3	3

Observation: \mathcal{T} becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:

(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

Observation: \mathcal{T} becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:

(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

| 4 | 5 | 5 | 5 | 2 | 3 | 5 | 4 | 2 | 2 | 2 | 5 | 5 | 5 | 4 | 2 | 5 | 1 | 5 | 4 | 2 | 3 | 4 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 5 | 5 | 2 | 3 | 4 | 2 | 3 | 4 | 1 | 3 | 2 | 2 | 1 | 4 | 4 | 4 | 1 | 2 | 3 | 3 |
| :--- |

Observation: \mathcal{T} becomes stationary after each value was inserted!
Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

| 4 | 5 | 5 | 5 | 2 | 3 | 5 | 4 | 2 | 2 | 2 | 5 | 5 | 5 | 4 | 2 | 5 | 1 | 5 | 4 | 2 | 3 | 4 | 2 | 2 | 1 | 2 | 4 | 2 | 2 | 5 | 5 | 2 | 3 | 4 | 2 | 3 | 4 | 1 | 3 | 2 | 2 | 1 | 4 | 4 | 4 | 1 | 2 | 3 | 3 |
| :--- |

Fringe-balanced:
\rightsquigarrow stationary after each value Observation: \mathcal{T} becomes stationary after each value was inserted! \quad inserted $k=2 t+1$ times
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$!)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

Fringe-balanced:
\rightsquigarrow stationary after each value
Observation: \mathcal{T} becomes stationary after each value was inserted! inserted $k=2 t+1$ times (up to k duplicates in buffer)

Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

tree-growing part $\rightsquigarrow \mathcal{T}$
Fringe-balanced:
\rightsquigarrow stationary after each value
Observation: \mathcal{T} becomes stationary after each value was inserted! inserted $k=2 t+1$ times (up to k duplicates in buffer)

Split input into tree-growing part and searching part:

(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
\leadsto profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

tree-growing part $\rightsquigarrow \mathcal{T}$
Fringe-balanced:
\rightsquigarrow stationary after each value
Observation: \mathcal{T} becomes stationary after each value was inserted! inserted $k=2 t+1$ times (up to k duplicates in buffer)

Split input into tree-growing part and searching part:
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
\leadsto profile \vec{X}_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

Observation: \mathcal{T} becomes stationary after each value was inserted!
hopefully a short prefix!

Split input into tree-growing part and searching part:

inserted $k=2 t+1$ times (up to k duplicates in buffer)
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

searching part $\rightsquigarrow \vec{X}_{S} \quad$ Fringe-balanced:
\rightsquigarrow stationary after each value
Observation: \mathcal{T} becomes stationary after each value was inserted! inserted $k=2 t+1$ times (up to k duplicates in buffer)
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile X_{S} of search part independent of \mathcal{T}

Two parts of input always dependent! (profiles must sum to \vec{x})
\because Two parts are independent (i.i.d.!)

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

searching part $\rightsquigarrow \vec{X}_{S} \quad$ Fringe-balanced:
\rightsquigarrow stationary after each value
Observation: \mathcal{T} becomes stationary after each value was inserted! inserted $k=2 t+1$ times (up to k duplicates in buffer)
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements. profile X_{S} of search part independent of \mathcal{T}

Tree-growing and searching

\rightsquigarrow Quicksort costs $=$ costs to search input $\overrightarrow{\mathrm{U}}=\left(\mathrm{U}_{1}, \ldots, \mathrm{U}_{n}\right)$ in final tree \mathcal{T}.

- \mathcal{T} fixed \rightsquigarrow search cost depends only on profile $\vec{X}=\left(X_{1}, \ldots, X_{u}\right)$
- but: \mathcal{T} also depends on $\overrightarrow{\mathrm{U}} \quad$ (Recall: \mathcal{T} is built from $\overrightarrow{\mathrm{U}}$)
\rightsquigarrow direct analysis no simpler than for Quicksort

$$
(k=1)
$$

searching part $\rightsquigarrow \vec{X}_{S} \quad$ Fringe-balanced:
\rightsquigarrow stationary after each value Observation: \mathcal{T} becomes stationary after each value was inserted! \longleftarrow inserted $k=2 t+1$ times (up to k duplicates in buffer)
(1) We built \mathcal{T} until it is stationary, ignoring costs.
(2) Determine costs of searching remaining elements.
\rightsquigarrow profile \vec{X}_{S} of search part independent of \mathcal{T}

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
Allow only first n_{T} elements for tree growing.

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.

\rightsquigarrow Allow only first n_{T} elements for tree growing.

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.

\rightsquigarrow Allow only first n_{T} elements for tree growing.

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.

Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
to be chosen

Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$ $n_{\mathrm{T}}=\left\lceil\mathrm{n}^{1-\tilde{\varepsilon}}\right\rceil$ with $\tilde{\varepsilon}<\varepsilon \rightsquigarrow \quad$ non-degenerate w.h.p. \quad (Pridegenerate) $=0\left(\mathrm{n}^{-\mathrm{c}}\right.$) for any c)

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates":
$\mathrm{n}_{\mathrm{T}}=\left\lceil\mathrm{n}^{1-\tilde{\varepsilon}}\right\rceil$ with $\tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\downarrow} \neq$
$\mathbb{E}\left[X_{v}\right]=\Omega\left(n^{\varepsilon}\right)$
for $\varepsilon>0$
Note: implies $u=O\left(n^{1-\varepsilon}\right)$
non-degenerate w.h.p. $\quad\left(\operatorname{Pr}[\right.$ degenerate $]=o\left(n^{-c}\right)$ for any $\left.c\right)$

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates":

$$
n_{\top}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\searrow}
$$

\square
$\mathbb{E}\left[X_{v}\right]=\Omega\left(\mathfrak{n}^{\varepsilon}\right)$
for $\varepsilon>0$ Note: implies $u=O\left(\mathfrak{n}^{1-\varepsilon}\right)$ non-degenerate w.h.p. $\left(\operatorname{Pr}[\right.$ degenerate $]=\mathrm{o}\left(\mathrm{n}^{-\mathrm{c}}\right)$ for any c$)$

- Costs to grow \mathfrak{T} :

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates":

$$
n_{\top}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\searrow}
$$

\square
$\mathbb{E}\left[X_{v}\right]=\Omega\left(\mathrm{n}^{\varepsilon}\right)$
for $\varepsilon>0$ Note: implies $u=O\left(\mathfrak{n}^{1-\varepsilon}\right)$
non-degenerate w.h.p.
$\left(\operatorname{Pr}[\right.$ degenerate $]=\mathrm{o}\left(\mathrm{n}^{-\mathrm{c}}\right)$ for any c$)$

- Costs to grow \mathfrak{T} :
- never more than $\leqslant \mathfrak{n}_{\mathrm{T}} \cdot \mathfrak{u}$

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates":

$$
n_{T}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\rightsquigarrow}
$$

\square
$\mathbb{E}\left[X_{v}\right]=\Omega\left(n^{\varepsilon}\right)$
for $\varepsilon>0$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$
non-degenerate w.h.p. $\left(\operatorname{Pr}[\right.$ degenerate $]=\mathrm{o}\left(\mathrm{n}^{-\mathrm{c}}\right)$ for any c$)$

- Costs to grow \mathfrak{T} :

- never more than $\leqslant n_{T} \cdot u$

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{v}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
n_{\mathrm{T}}=\left\lceil\mathrm{n}^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\downarrow}
$$

non-degenerate w.h.p. (Pr[degenerate] $=\mathrm{o}\left(\mathrm{n}^{-c}\right)$ for any c$)$

- Costs to grow \mathfrak{T} :
- never more than $\leqslant \mathfrak{n}_{T} \cdot \mathfrak{u} \quad \ldots$ but that is too coarse! (n $n_{T} \cdot \mathbf{u}$ can be close to n^{2})

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
n_{\mathrm{T}}=\left\lceil\mathrm{n}^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \stackrel{\text { Binomial tail bound }}{\downarrow}
$$

non-degenerate w.h.p. (Pr[degenerate] $=\mathrm{o}\left(\mathrm{n}^{-c}\right)$ for any c$)$

- Costs to grow \mathfrak{T} :
can't use large n_{T}
- never more than $\leqslant n_{T} \cdot u \quad \ldots$ but that is too coarse! (n $n_{T} \cdot u$ can be close to n^{2})
folklore result: random BSTs have logarithmic height w.h.p.

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{\top} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicate"": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
\mathrm{n}_{\mathrm{T}}=\left\lceil\mathrm{n}^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \quad \gtrsim
$$

non-degenerate w.h.p. (Pr[degenerate] $=\mathrm{o}\left(\mathrm{n}^{-\mathrm{c}}\right)$ for any c)

- Costs to grow \mathfrak{T} :
can't use large n_{T}
- never more than $\leqslant n_{T} \cdot \mathfrak{u} \quad \ldots$ but that is too coarse! (n $n_{T} \cdot u$ can be close to n^{2})
folklore result: random BSTs have logarithmic height w.h.p.
- can extend this to fringe-balanced trees $\rightsquigarrow n_{T} \cdot O(\log n)=O\left(n^{1-\varepsilon} \log n\right)$ to build \mathcal{T}

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicate"": $\mathbb{E}\left[X_{v}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
\left.n_{T}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \text { bon-degenerate w.h.p. } \quad \text { (Pridegeneratel }=o\left(n^{-c}\right) \text { for any } c\right)
$$

- Costs to grow \mathcal{T} :
- never more than $\leqslant n_{T} \cdot u \quad \ldots$ but that is too coarse! (n $n_{T} \cdot u$ can be close to n^{2})
folklore result: random BSTs have logarithmic height w.h.p.
- can extend this to fringe-balanced trees $\rightsquigarrow n_{T} \cdot O(\log n)=O\left(n^{1-\varepsilon} \log n\right)$ to build \mathcal{T}
\rightsquigarrow Expected Quicksort costs:

$$
\left.\mathbb{E}\left[\mathrm{C}_{\mathrm{n}, \overrightarrow{\mathrm{q}}}\right]=\alpha(\overrightarrow{\mathrm{q}}) \cdot \mathrm{n} \pm \mathrm{O}\left(\mathrm{n}^{1-\delta}\right) \quad \quad \text { (for any } \delta \in(0, \varepsilon)\right)
$$

- $\alpha(\overrightarrow{\mathrm{q}})=$ expected search cost in random \mathcal{J}
- error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high \mathcal{T}

Bounding the tree-growing part

Goal: ignore tree-growing for analysis. to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
\left.\left.n_{T}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \quad \nsupseteq \quad \text { non-degenerate w.h.p. } \quad \text { (Pridegenerate }\right]=o\left(n^{-c}\right) \text { for any } c\right)
$$

- Costs to grow \mathcal{T} :
- never more than $\leqslant n_{T} \cdot u \quad \ldots$ but that is too coarse! (n $n_{T} \cdot u$ can be close to n^{2})
folklore result: random BSTs have logarithmic height w.h.p.
- can extend this to fringe-balanced trees $\rightsquigarrow n_{T} \cdot O(\log n)=O\left(n^{1-\varepsilon} \log n\right)$ to build \mathcal{T}
\rightsquigarrow Expected Quicksort costs:

$$
\left.\mathbb{E}\left[\mathrm{C}_{\mathrm{n}, \overrightarrow{\mathrm{q}}}\right]=\alpha(\overrightarrow{\mathrm{q}}) \cdot \mathrm{n} \pm \mathrm{O}\left(\mathrm{n}^{1-\delta}\right) \quad \text { (for any } \delta \in(0, \varepsilon)\right)
$$

- $\alpha(\overrightarrow{\mathrm{q}})=$ expected search cost in random \mathfrak{T}

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.

to be chosen

\rightsquigarrow Allow only first n_{T} elements for tree growing.
Problem: if a value occurs $<k$ times in first n_{T} elements, \mathcal{T} not complete
\rightsquigarrow Choose n_{T} large enough to make those degenerate inputs rare.

- Require "many duplicates": $\mathbb{E}\left[X_{\nu}\right]=\Omega\left(n^{\varepsilon}\right)$ for $\varepsilon>0 \quad$ Note: implies $u=O\left(n^{1-\varepsilon}\right)$

$$
\left.\left.n_{T}=\left\lceil n^{1-\tilde{\varepsilon}}\right\rceil \text { with } \tilde{\varepsilon}<\varepsilon \quad \nRightarrow \quad \text { non-degenerate w.h.p. } \quad \text { (PrIdegenerate }\right]=o\left(n^{-c}\right) \text { for any } c\right)
$$

- Costs to grow \mathcal{T} :
- never more than $\leqslant n_{T} \cdot u \quad \ldots$ but that is too coarse! (n $n_{T} \cdot u$ can be close to n^{2})
folklore result: random BSTs have logarithmic height w.h.p.
- can extend this to fringe-balanced trees $\rightsquigarrow n_{T} \cdot O(\log n)=O\left(n^{1-\varepsilon} \log n\right)$ to build \mathcal{T}
\rightsquigarrow Expected Quicksort costs:

$$
\left.\mathbb{E}\left[\mathrm{C}_{\mathrm{n}, \overrightarrow{\mathrm{q}}}\right]=\alpha(\overrightarrow{\mathrm{q}}) \cdot \mathrm{n} \pm \mathrm{O}\left(\mathrm{n}^{1-\delta}\right) \quad \text { (for any } \delta \in(0, \varepsilon)\right)
$$

- $\alpha(\vec{q})=$ expected search cost in random \mathcal{T}
- error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high \mathcal{T}

Intro

1
 Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{\mathrm{u}} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
Warmup: Ordinary BSTs ($\mathrm{t}=0$)

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v) \quad \mathcal{T}$ from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathrm{q}})$ elements until saturation Warmup: Ordinary BSTs $(t=0)$

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$ distribution with prob. weights q_{1}, \ldots, q_{u} Warmup: Ordinary BSTs $(t=0)$

Search Costs in Saturated Trees

$$
\begin{aligned}
& \text { Recall: } \alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v) \quad \mathcal{T} \text { from inserting i.i.d. } \stackrel{\mathcal{D}}{ }(\overrightarrow{\mathrm{q}}) \text { elements } u \\
& \text { Warmup: Ordinary BSTs }(\mathrm{t}=0)
\end{aligned}
$$

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v) \quad \mathcal{T}$ from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathrm{q}})$ elements until saturation
Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result: Allen \& Munro 1978:
Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j
ancestor $\Longleftrightarrow i$ first inserted key among i,

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathbf{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978:
Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among \mathfrak{i}, \ldots, j

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Fringe-balanced trees $(t>1)$
Old result:
Allen \& Munro 1978:
Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among \mathfrak{i}, \ldots, j

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

Fringe-balanced trees ($t>1$)

- probability of given value in root:

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among \mathfrak{i}, \ldots, j
prob. that i inserted first among $i, \ldots j$??

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among \mathfrak{i}, \ldots, j

Fringe-balanced trees ($t>1$)

- probability of given value in root:
\rightsquigarrow prob. that \mathfrak{i} inserted first among $\mathfrak{i}, \ldots j$??

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

\mathcal{T} from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathfrak{q}})$ elements until saturation

Fringe-balanced trees ($t>1$)

- probability of given value in root:

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j
\rightsquigarrow prob. that i inserted first among $i, \ldots j$?? old approach does not work

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j

- In the same paper: $\mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})<\mathcal{H}_{\ln }(\overrightarrow{\mathfrak{q}})$

\rightsquigarrow prob. that i inserted first among $i, \ldots j$?? old approach does not work
Fringe-balanced trees $(t>1)$
- probability of given value in root:
\mathcal{T} from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathfrak{q}})$ elements until saturation

$$
t=0
$$

rted first among

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}

Warmup: Ordinary BSTs $(\mathrm{t}=0)$

Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{\mathrm{q}_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j

- In the same paper: $\mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})<\mathcal{H}_{\ln }{ }^{\downarrow}(\overrightarrow{\mathrm{q}})$

Fringe-balanced trees $(t>1)$

- probability of given value in root:

$$
t=0
$$

\mathcal{T} from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathbf{q}})$ elements until saturation
\rightsquigarrow prob. that \mathfrak{i} inserted first among $\mathfrak{i}, \ldots j$?? old approach does not work

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathfrak{J}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}
\mathcal{T} from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathbf{q}})$ elements until saturation

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Fringe-balanced trees ($t>1$)

- probability of given value in root: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j

- In the same paper: $\mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})<\mathcal{H}_{\ln }{ }^{\downarrow}(\overrightarrow{\mathrm{q}})$
$\rightsquigarrow \alpha(\overrightarrow{\mathbf{q}})<2 \ln 2 \cdot \stackrel{\mathcal{H}_{\mathrm{ld}}^{\text {base } 2 \text { entropy }} \downarrow}{\downarrow}(\overrightarrow{\mathrm{q}})+1$,

Search Costs in Saturated Trees

Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$
distribution with prob. weights q_{1}, \ldots, q_{u}
\mathcal{T} from inserting i.i.d. $\mathcal{D}(\overrightarrow{\mathbf{q}})$ elements until saturation

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Fringe-balanced trees ($t>1$)

- probability of given value in root: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{q_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j

- In the same paper: $\mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})<\mathcal{H}_{\ln }{ }^{\downarrow}(\overrightarrow{\mathrm{q}})$
$\rightsquigarrow \alpha(\overrightarrow{\mathrm{q}})<2 \ln 2 \cdot \stackrel{\mathcal{H}_{\mathrm{ld}}{ }^{\text {base }} 2 \text { entropy }}{ }(\overrightarrow{\mathrm{q}})+1$, only factor $2 \ln 2 \approx 1.386$ from optimal!

Search Costs in Saturated Trees

distribution with prob. weights q_{1}, \ldots, q_{u}
Recall: $\alpha(\overrightarrow{\mathrm{q}})=\sum_{v=1}^{u} \mathrm{q}_{v} \cdot \operatorname{depth}_{\mathcal{T}}(v)$

Warmup: Ordinary BSTs $(\mathrm{t}=0)$
Old result:
Allen \& Munro 1978: Self-Organizing Binary Search Trees

$$
\begin{aligned}
& \alpha(\overrightarrow{\mathrm{q}})=2 \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})+1 \text { with } \\
& \mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})=\sum_{1 \leqslant i<j \leqslant u} \frac{\mathrm{q}_{i} q_{j}}{q_{i}+\cdots+q_{j}}
\end{aligned}
$$

Fringe-balanced trees ($t>1$)

- probability of given value in root:

- Proof sketch:

Sum prob. that i is ancestor of j over all i, j ancestor $\Longleftrightarrow i$ first inserted key among i, \ldots, j

- In the same paper: $\mathcal{H}_{\mathrm{Q}}(\overrightarrow{\mathrm{q}})<\mathcal{H}_{\ln }^{\downarrow}(\overrightarrow{\mathrm{q}})$

$$
\leadsto \alpha(\overrightarrow{\mathrm{q}})<2 \ln 2 \cdot \mathcal{H}_{\mathrm{ld}}(\overrightarrow{\mathrm{q}})+1
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

Aggregation of Entropy

- One of the defining properties

Aggregation of Entropy

- One of the defining properties

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right) \quad=\quad \mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} .+\frac{1}{2}
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST:

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \triangle \mathrm{P},>\mathrm{P}$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle P,=P,>P$

$$
\rightsquigarrow \mathcal{H}(\overrightarrow{\mathrm{q}})=\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right)+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \mathcal{H}\left(\mathrm{Z}_{\mathrm{j}}\right)
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \triangle \mathrm{P},>\mathrm{P}$

$$
\rightsquigarrow \mathcal{H}(\overrightarrow{\mathrm{q}})=\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right)+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \mathcal{H}\left(\mathrm{Z}_{\mathrm{j}}\right) \quad \begin{aligned}
& \mathrm{Z}_{1}=\left(\frac{\mathrm{q}_{1}}{V_{1}}, \ldots, \frac{\mathrm{q}_{\mathrm{P}-1}}{\mathrm{~V}_{1}}\right) \\
& \mathrm{Z}_{2}=\left(\frac{\left(\mathrm{P}_{+1}\right.}{V_{2}}, \ldots, \frac{\mathrm{q}_{\mathrm{u}}}{V_{2}}\right)
\end{aligned}
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle P, \angle P,>P$

$$
\rightsquigarrow \mathcal{H}(\overrightarrow{\mathrm{q}})=\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right)+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \mathcal{H}\left(\mathrm{Z}_{\mathrm{j}}\right) \quad \begin{aligned}
& \mathrm{Z}_{1}=\left(\frac{\mathrm{q}_{1}}{\mathrm{~V}_{1}}, \ldots, \frac{\mathrm{q}_{\mathrm{P}-1}}{\mathrm{~V}_{1}}\right. \\
& \mathrm{Z}_{2}=\left(\frac{\left(\mathrm{P}_{P+1}\right.}{V_{2}}, \ldots, \frac{\mathrm{q}_{u}}{V_{2}}\right)
\end{aligned}
$$

$$
\alpha(\vec{q})=1+\sum_{j=1}^{2} V_{j} \cdot \alpha\left(Z_{j}\right)
$$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \angle \mathrm{P},>\mathrm{P}$
$\stackrel{Z_{1}}{Z_{2}} \quad \stackrel{\text { Recurrence for search costs: }}{ } \quad \alpha(\overrightarrow{\mathbf{q}}) \stackrel{\downarrow}{=} 1+\sum_{j=1}^{2} V_{j} \cdot \alpha\left(Z_{j}\right)$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \angle \mathrm{P},>\mathrm{P}$

- Recurrence for search costs: $\quad \alpha(\overrightarrow{\mathrm{q}}) \stackrel{\downarrow}{=} 1+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \alpha\left(\mathrm{Z}_{\mathrm{j}}\right) \rightsquigarrow \underset{\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{V}_{2}\right) \text { vs. 1? }}{ }$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $<\mathrm{P}, \angle \mathrm{P},>\mathrm{P}$

- Recurrence for search costs:

$$
\alpha(\overrightarrow{\mathrm{q}}) \stackrel{\downarrow}{=} 1+\sum_{\mathrm{j}=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \alpha\left(\mathrm{Z}_{\mathrm{j}}\right) \rightsquigarrow \mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right) \text { vs. } 1 \text { ? }
$$

- Technical Issues

$$
\rightsquigarrow \mathcal{H}(\overrightarrow{\mathrm{q}})=\underset{\sim}{\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right)+\sum_{\mathfrak{j}=1}^{2} \mathrm{~V}_{\mathfrak{j}} \cdot \mathcal{H}\left(\mathrm{Z}_{\mathfrak{j}}\right)} \begin{array}{ll}
& \begin{array}{l}
\mathrm{Z}_{1} \\
\text { same shape! }
\end{array} \\
\mathrm{Z}_{2}=\left(\frac{\mathrm{q}_{1}}{\mathrm{~V}_{1}}, \ldots, \frac{\mathrm{q}_{\mathrm{p}-1}}{\mathrm{~V}_{1}}\right)
\end{array}
$$

(1) Pivot P is random
(2) $\mathbb{E}\left[\mathcal{H}_{\mathrm{I}}\left(\mathrm{V}_{1}, \mathrm{H}_{1}, \mathrm{~V}_{2}\right)\right] \approx \mathbb{E}\left[\mathcal{F}_{1 n}(\mathrm{D}, 1-\mathrm{D})\right]=\mathrm{H}_{\mathrm{K}+1}-\mathrm{H}_{\mathrm{H}}, \quad$ where $\mathrm{D}=$ Betaa $(\mathrm{t}+1, \mathrm{t}+1$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $<P,=P,>P$

- Recurrence for search costs: $\alpha(\overrightarrow{\mathrm{q}}) \stackrel{\downarrow}{=} 1+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \alpha\left(\mathrm{Z}_{\mathrm{j}}\right) \rightsquigarrow \underset{\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{V}_{2}\right) \text { vs. 1? }}{ }$
- Technical Issues
(1) Pivot P is random \rightsquigarrow take expectations over P (and thus $\mathrm{V}_{1,2}, \mathrm{Z}_{1,2}$).

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \angle \mathrm{P},>\mathrm{P}$

- Recurrence for search costs: $\alpha(\overrightarrow{\mathrm{q}}) \stackrel{\downarrow}{=} 1+\sum_{\mathrm{j}=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \alpha\left(\mathrm{Z}_{\mathrm{j}}\right) \rightsquigarrow \underset{\mathcal{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{V}_{2}\right) \text { vs. 1? }}{ }$
- Technical Issues
(1) Pivot P is random \rightsquigarrow take expectations over P (and thus $\mathrm{V}_{1,2}, \mathrm{Z}_{1,2}$).
(2) $\mathbb{E}\left[\mathcal{H}_{\ln }\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{V}_{2}\right)\right] \approx \mathbb{E}\left[\mathcal{H}_{\ln }(\mathrm{D}, 1-\mathrm{D})\right]=\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1} \quad$ where $\mathrm{D} \stackrel{\underline{D}}{\underline{D}} \operatorname{Beta}(\mathrm{t}+1, \mathrm{t}+1)$

Aggregation of Entropy

- One of the defining properties of Shannon entropy: aggregation

$$
\mathcal{H}\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}\right)=\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right)+\frac{1}{2} \cdot 0+\frac{1}{2} \cdot \mathcal{H}\left(\frac{2}{3}, \frac{1}{3}\right)
$$

First partitioning step / Root of BST: Split into $\angle \mathrm{P}, \angle \mathrm{P},>\mathrm{P}$

- Recurrence for search costs:

$$
\alpha(\overrightarrow{\mathrm{q}}) \stackrel{\downarrow}{=} 1+\sum_{j=1}^{2} \mathrm{~V}_{\mathrm{j}} \cdot \alpha\left(\mathrm{Z}_{\mathrm{j}}\right) \rightsquigarrow \mathscr{H}\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{~V}_{2}\right) \text { vs. } 1 ?
$$

- Technical Issues
(1) Pivot P is random \rightsquigarrow take expectations over P (and thus $V_{1,2}, Z_{1,2}$).
(2) $\mathbb{E}\left[\mathcal{H}_{\ln }\left(\mathrm{V}_{1}, \mathrm{H}, \mathrm{V}_{2}\right)\right] \approx \mathbb{E}\left[\mathcal{H}_{\ln }(\mathrm{D}, 1-\mathrm{D})\right]=\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1} \quad$ where $\mathrm{D}{ }_{\underline{\underline{D}}} \operatorname{Beta}(\mathrm{t}+1, \mathrm{t}+1)$ but not an inequality in either direction

Entropy Bounds for Search Costs

$\rightsquigarrow \quad \alpha(\overrightarrow{\mathrm{q}})=\mathrm{c} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})$ does not seem to hold for any constant c

- But we can show

for family of constants (c, d) and ($\mathrm{c}^{\prime}, \mathrm{d}^{\prime}$)
- Always have $c^{\prime}<\alpha_{k}<c$ where

Entropy Bounds for Search Costs

$\rightsquigarrow \alpha(\overrightarrow{\mathrm{q}})=\mathrm{c} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})$ does not seem to hold for any constant c

- But we can show

$$
\begin{aligned}
\alpha(\overrightarrow{\mathrm{q}}) & \leqslant c \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})+\mathrm{d} \\
\alpha_{\overrightarrow{\mathrm{q}}} & \geqslant \mathrm{c}^{\prime} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})-\mathrm{d}^{\prime}
\end{aligned}
$$

for family of constants (c, d) and (c^{\prime}, d^{\prime}).

- Always have $\mathrm{c}^{\prime}<\alpha_{\mathrm{k}}<\mathrm{c}$ where

Entropy Bounds for Search Costs

$\rightsquigarrow \alpha(\overrightarrow{\mathrm{q}})=\mathrm{c} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})$ does not seem to hold for any constant c

- But we can show

$$
\begin{aligned}
\alpha(\overrightarrow{\mathbf{q}}) & \leqslant c \cdot \mathcal{H}(\overrightarrow{\mathbf{q}})+\mathrm{d} \\
\alpha_{\overrightarrow{\mathrm{q}}} & \geqslant \mathrm{c}^{\prime} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})-\mathrm{d}^{\prime}
\end{aligned}
$$

for family of constants (c, d) and (c^{\prime}, d^{\prime}).

Entropy Bounds for Search Costs

$\rightsquigarrow \quad \alpha(\overrightarrow{\mathrm{q}})=\mathrm{c} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})$ does not seem to hold for any constant c

- But we can show

$$
\begin{aligned}
\alpha(\overrightarrow{\mathbf{q}}) & \leqslant c \cdot \mathcal{H}(\overrightarrow{\mathbf{q}})+\mathrm{d} \\
\alpha_{\overrightarrow{\mathbf{q}}} & \geqslant \mathrm{c}^{\prime} \cdot \mathcal{H}(\overrightarrow{\mathbf{q}})-\mathrm{d}^{\prime}
\end{aligned}
$$

for family of constants (c, d) and (c^{\prime}, d^{\prime}).

- Always have $c^{\prime}<\alpha_{k}<c$ where

$$
\alpha_{k}=\frac{\ln 2}{\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1}}
$$

Entropy Bounds for Search Costs

$\rightsquigarrow \quad \alpha(\overrightarrow{\mathrm{q}})=\mathrm{c} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})$ does not seem to hold for any constant c

- But we can show

$$
\begin{aligned}
\alpha(\overrightarrow{\mathbf{q}}) & \leqslant c \cdot \mathcal{H}(\overrightarrow{\mathbf{q}})+\mathrm{d} \\
\alpha_{\overrightarrow{\mathbf{q}}} & \geqslant \mathrm{c}^{\prime} \cdot \mathcal{H}(\overrightarrow{\mathrm{q}})-\mathrm{d}^{\prime}
\end{aligned}
$$

for family of constants (c, d) and (c^{\prime}, d^{\prime}).

- Always have $c^{\prime}<\alpha_{k}<c$ where

$$
\alpha_{k}=\frac{\ln 2}{\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1}}
$$

\rightsquigarrow Asymptotically matching values for c and c^{\prime}

$$
\rightsquigarrow \alpha(\overrightarrow{\mathbf{q}})=\alpha_{\mathrm{k}} \cdot \mathcal{H}_{\mathrm{ld}}(\overrightarrow{\mathbf{q}}) \pm \mathrm{O}\left(\mathcal{H}(\overrightarrow{\mathbf{q}})^{\frac{\mathrm{t}+2}{t+3}} \log (\mathcal{H}(\overrightarrow{\mathbf{q}}))\right)
$$

Results in the i.i.d. Model

Time to put the pieces together!

n. Separation Theorem:

Quicksort costs

- in the i.i.d. model
- with "many duplicates"
($\Omega\left(\mathrm{n}^{\varepsilon}\right)$ duplicates of each value in expectation)

$\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha(\vec{q}) \cdot n \pm O\left(n^{1-\delta}\right)$
. Average search costs
in saturated k-fringe-balanced trees:

Quicksort Costs (i.i.d. model)

Under the ascumptions ahove, we have for any δ $\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha_{k} \mathcal{F}_{\mathrm{l}}(\overrightarrow{\mathrm{q}}) \cdot n \pm \mathrm{O}\left(\left(\mathcal{F}(\overrightarrow{\mathrm{q}})^{1-\delta}+1\right) n\right)$

Results in the i.i.d. Model

Time to put the pieces together!

- Separation Theorem:

Quicksort costs

- in the i.i.d. model ${ }^{8}$
- with "many duplicates"
($\Omega\left(\mathrm{n}^{\varepsilon}\right)$ duplicates of each value in expectation)
are given by $\quad($ as $n \rightarrow \infty$, for any $\delta \in(0, \varepsilon))$

$$
\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha(\vec{q}) \cdot n \pm O\left(n^{1-\delta}\right)
$$

($\boldsymbol{\sim}$ Average search costs
in saturated k-fringe-balanced trees:

Results in the i.i.d. Model

Time to put the pieces together!

^ Separation Theorem:

Quicksort costs

- in the i.i.d. model ${ }^{\text {Pr }}$
- with "many duplicates"
($\Omega\left(\mathrm{n}^{\varepsilon}\right)$ duplicates of each value in expectation)
are given by $\quad($ as $n \rightarrow \infty$, for any $\delta \in(0, \varepsilon))$

$$
\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha(\vec{q}) \cdot n \pm O\left(n^{1-\delta}\right)
$$

1 Average search costs

in saturated k-fringe-balanced trees:

$$
\alpha(\overrightarrow{\mathrm{q}})=\alpha_{\mathrm{k}} \cdot \mathcal{H} \pm \mathrm{O}\left(\mathcal{H}^{\frac{\mathrm{t}+2}{\mathrm{t}+3}} \log \mathcal{H}\right)
$$

- $\mathcal{H}=\mathcal{H}_{\mathrm{ld}}(\overrightarrow{\mathrm{q}})$
- $\alpha_{k}=\frac{\ln 2}{\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1}}$

Results in the i.i.d. Model

Time to put the pieces together!

1 Separation Theorem:

Quicksort costs

- in the i.i.d. model ${ }^{8}{ }^{2}$
- with "many duplicates"
$\left(\Omega\left(n^{\varepsilon}\right)\right.$ duplicates of each value in expectation)
are given by $\quad($ as $n \rightarrow \infty$, for any $\delta \in(0, \varepsilon))$

$$
\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha(\vec{q}) \cdot n \pm O\left(n^{1-\delta}\right)
$$

- Average search costs in saturated k-fringe-balanced trees:

$$
\alpha(\overrightarrow{\mathrm{q}})=\alpha_{\mathrm{k}} \cdot \mathcal{H} \pm \mathrm{O}\left(\mathcal{H}^{\frac{\mathrm{t}+2}{\mathrm{t}+3}} \log \mathcal{H}\right)
$$

- $\mathcal{H}=\mathcal{H}_{\mathrm{ld}}(\overrightarrow{\mathrm{q}})$
- $\alpha_{k}=\frac{\ln 2}{\mathrm{H}_{\mathrm{k}+1}-\mathrm{H}_{\mathrm{t}+1}}$

Quicksort Costs (i.i.d. model)

Under the assumptions above, we have for any $\delta \in\left(0, \frac{1}{t+3}\right)$ $\mathbb{E}\left[C_{n, \vec{q}}\right]=\alpha_{k} \mathcal{H}_{\mathrm{ld}}(\overrightarrow{\mathrm{q}}) \cdot \mathrm{n} \pm \mathrm{O}\left(\left(\mathcal{H}(\overrightarrow{\mathrm{q}})^{1-\delta}+1\right) \mathrm{n}\right)$.

Intro

Quicksort and Search Trees

Saturated Fringe-Balanced Trees

Back to Multiset Permutations

Back to the Multiset Model

How about the multiset model? $\underset{\rightarrow}{\boldsymbol{\rightharpoonup}}$
Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs. Need Chernoff bound for multinomial variables.

Back to the Multiset Model

How about the multiset model? $\underset{\rightarrow}{\boldsymbol{\rightharpoonup}}$

- - Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.

Need Chernoff bound for multinomial variables.

Back to the Multiset Model

How about the multiset model?

- -' Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.

Need Chernoff bound for multinomial variables.

Back to the Multiset Model

How about the multiset model?

- Many duplicates \rightsquigarrow profile \vec{x} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.

Back to the Multiset Model

How about the multiset model?

- Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.
\rightsquigarrow Need Chernoff bound for multinomial variables.

Back to the Multiset Model

How about the multiset model?
-(Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.
\rightsquigarrow Need Chernoff bound for multinomial variables.

THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE CONVERGENCE IN L_{1} FOR KERNEL DENSITY ESTIMATES ${ }^{1}$

By Luc Devroye

McGill University

Let f be a density on R^{d}, and let f_{n} be the kernel estimate of f,

$$
f_{n}(x)=\left(n h^{d}\right)^{-1} \sum_{i=1}^{n} K\left(\left(x-X_{i}\right) / h\right)
$$

where $h=h_{n}$ is a sequence of positive numbers, and K is an absolutely integrable function with $\int K(x) d x=1$. Let $J_{n}=\int\left|f_{n}(x)-f(x)\right| d x$. We show

Back to the Multiset Model

How about the multiset model?
\therefore - Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.
\rightsquigarrow Need Chernoff bound for multinomial variables.
The Annals of Statistics
Lemma 3. (A multinomial distribution inequality). Let $\left(X_{1}, \cdots, X_{k}\right)$ be a multinomial $\left(n, p_{1}, \cdots, p_{k}\right)$ random vector. For all $\varepsilon \in(0,1)$ and all k satisfying $k / n \leq \varepsilon^{2} / 20$, we have

$$
P\left(\sum_{i=1}^{k}\left|X_{i}-E\left(X_{i}\right)\right|>n \varepsilon\right) \leq 3 \exp \left(-n \varepsilon^{2} / 25\right) .
$$

$\overline{M c G i l l}$ University

Let f be a density on R^{d}, and let f_{n} be the kernel estimate of f,

$$
f_{n}(x)=\left(n h^{d}\right)^{-1} \sum_{i=1}^{n} K\left(\left(x-X_{i}\right) / h\right)
$$

where $h=h_{n}$ is a sequence of positive numbers, and K is an absolutely integrable function with $\int K(x) d x=1$. Let $J_{n}=\int\left|f_{n}(x)-f(x)\right| d x$. We show

Back to the Multiset Model

How about the multiset model?
Many duplicates \rightsquigarrow profile \vec{X} concentrated around $\mathbb{E}[\vec{X}]=\vec{q} n$
(1) Replace multiset model with profile \vec{x} by i.i.d. model with $\vec{q}=\vec{x} / n$
(2) Use Chernoff bounds to bound difference between costs.
\rightsquigarrow Need Chernoff bound for multinomial variables.

The Annals of Statistics
Lemma 3. (A multinomial distribution inequality). Let $\left(X_{1}, \cdots, X_{k}\right)$ be a multinomial $\left(n, p_{1}, \cdots, p_{k}\right)$ random vector. For all $\varepsilon \in(0,1)$ and all k satisfying $k / n \leq \varepsilon^{2} / 20$, we have

$$
P\left(\sum_{i=1}^{k}\left|X_{i}-E\left(X_{i}\right)\right|>n \varepsilon\right) \leq 3 \exp \left(-n \varepsilon^{2} / 25\right) .
$$

McGill University

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk:

For uniform $\vec{q}=\left(\frac{1}{u}, \ldots, \frac{1}{u}\right)$ with $u=O\left(n^{1}\right.$

Open Problems

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{u}, \ldots, \frac{1}{u}\right)$ with $u=O\left(n^{1}\right.$

Open Problems

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $u=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$

Dual-Pivot Quicksort and Beyond
Anslysio of Multiman Paritioning Sebastian Wild

Open Problems

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathrm{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds

Dual-Pivot Quicksort and Beyond
Anslysio of Multiway Paritioning Sebastian Wild

Open Problems

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathrm{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Dual-Pivot Quicksort and Beyond
Andysis of Multiwasy Partitioning
and IIS Practical Potetential
Sebastian Wild

Open Problems

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Dual-Pivot Quicksort and Beyond
Anslysio of Multiman Paritioning Sebastian Wild

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that
- inputs are non-degenerate w.h.p.
- tree-building costs are still negligible
- difference between i.i.d. model and multiset model is negligible
- the entropy is a lower bound

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Dual-Pivot Quicksort and Beyond
Andysis of Multiwayy Partionaing Sebastian Wild

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that
- inputs are non-degenerate w.h.p.
- tree-building costs are still negligible
- difference between i.i.d. model and multiset model is negligible
- the entropy is a lower bound

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Dual-Pivot Quicksort and Beyond
Andysio of Multiway Partitioning Sebastian Wild

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that
- inputs are non-degenerate w.h.p.
- tree-building costs are still negligible
- difference between i.i.d. model and multiset model is negligible
- the entropy is a lower bound

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that
- inputs are non-degenerate w.h.p.
- tree-building costs are still negligible
- difference between i.i.d. model and multiset model is negligible
- the entropy is a lower bound

Conclusion

Findings

- First analysis of median-of-k Quicksort on equal keys ... for "many duplicates".
\rightsquigarrow Same relative speedup as for random permutations.
- Partial Answer to conjecture of Sedgewick \& Bentley:

Median-of-k Quicksort approaches lower bound for $\mathrm{k} \rightarrow \infty$.

- Not in this talk: For uniform $\overrightarrow{\mathrm{q}}=\left(\frac{1}{\mathfrak{u}}, \ldots, \frac{1}{\mathrm{u}}\right)$ with $\mathfrak{u}=\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$
- better error bounds
- extension for multiway partitioning

Dual-Pivot Quicksort and Beyond
Andysio of Multiway Partitioning Sebastian Wild

Open Problems

- Get rid of "many duplicates" restriction; $n^{1-\varepsilon}$ seems (to me) best possible so that
- inputs are non-degenerate w.h.p.
- tree-building costs are still negligible
- difference between i.i.d. model and multiset model is negligible
- the entropy is a lower bound

Icons made by Freepik and Gregor Cresnar from www.flaticon. com.

[^0]: - (s-way Partitioning \rightsquigarrow s-ary search trees) \leftarrow not today

