
Median-of-k Quicksort Is Optimal For Many Equal Keys

Sebastian Wild
wild@cs.uni-kl.de

originates from joint work with

Martin Aumüller, Martin Dietzfelbinger,
Conrado Martínez, and Markus Nebel

AofA 2017
28th International Meeting on Probabilistic,

Combinatorial and Asymptotic Methods
for the Analysis of Algorithms

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 0 / 16

Outline

0 Intro0 Intro

1 Quicksort and Search Trees1 Quicksort and Search Trees

2 Saturated Fringe-Balanced Trees2 Saturated Fringe-Balanced Trees

3 Back to Multiset Permutations3 Back to Multiset Permutations

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 0 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

branch misses

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

branch misses

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

branch misses

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

branch misses

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Don’t we know everything about Quicksort by now?

Extensive literature and results on Quicksort

Type of result Analysis Techniques Algorithm variants Cost Measures

expected costs

variance

tail inequalities

limit distributions

(semi-)local limit laws

telescoping recurrences
singularity analysis

Euler differential eq.
Martingales

contraction method
branching processes

continuous master theorem

pivot sampling

Insertionsort cutoff

multiway partitioning

Quickselect

constant space

key comparisons

symbol comparisons

swaps

scanned elements

branch misses

but: most results consider random permutations as input!

partly justified: we can (shou
not done in libraries . . .

ld!) randomize Quicksort,
 every input appears randomly ordered

Catch: Elements with equal keys won’t go away!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 1 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv
~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv
~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv
~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv
~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Setup

Assumptions:
1 Input: (A) Multiset Model:

Random permutation U1, . . . , Un of fixed multiset
x1, . . . , xu

profile~x of input
number of occurrences of values 1, . . . , u

(B) Discrete i. i.d. Model:
U1, . . . , Un i. i.d. with Pr[U1 = v] = qv

 random profile ~X D= Mult(n,~q)

~q = (q1, . . . , qu) a fixed universe distribution

2 fat-pivot partitioning < P P P P > P

recursive call recursive callall duplicates of pivots removed
 subproblems of same type, (restricted to a sub-universe)

3 Cost: # ternary comparisons

Median-of-(2t+1) Quicksort:
median-of-(2t+ 1)

Example:
t = 3

P

t t(extension to asymmetric sampling possible)

not today

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 2 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Previous work on equal keys

Rather little is known!

Sedgewick 1977: Quicksort on Equal Keys

Sedgewick & Bentley 2002: Quicksort is Optimal (Talk at Knuthfest)

A bit more on BSTs:

Burge 1976: An Analysis of BSTs Formed from Sequences of Nondistinct Keys

Kemp 1996: BSTs constructed from nondistinct keys with/without specified probabilities

Archibald & Clément 2006: Average depth in a BST with repeated keys

This is basically all literature on analysis of Quicksort with equal keys!

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

An Analysis of Binary Search Trees Formed from
Sequences of Nondistinct Keys

WILLIAM H. BURGE

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. The expected depth of each key in the set of binary search trees formed from all sequences
composed from a multmet {pl • 1, p2 ' 2, p3 • 3, . . . , p~ • n} is obtained, and hence the expected
weight of such trees. The expected number of left-to-right local minima and the expected number of
cycles in sequences composed from a multiset are then deduced from these results.

K E Y W O R D S A N D P H R A S E S : binary search trees, multiset

CR CATEGORIES: 5.3

Introduction

The expected depth of the number r in the set of b inary search trees formed from all
permutat ions of { 1,2,3,..-,n} is known [1] to be Hr + H.+l - r -- 2 where Hr = ~ - l 1/k.
Also the expected number of rightgoing and leftgoing branches on the pa th from the root
to the number r are H,+r - i -- 1 and Hr - 1, respectively. In this paper these results
are extended to b inary search trees formed from sequences of nondist inct keys drawn
from the multiset {pi • 1, p2 • 2, . . . , p~ • n} (i.e. the sequences containing p~ l ' s ,
p2 2's, • • . , p , n 's) .

Both the expected number of comparisons needed to construct the b inary search
trees and the expected number of comparisons needed to search for a key in a tree are
obtained. The results are applicable to the analysis of the quicksort algori thm [3] when
applied to sequences of nondist inct keys.

Binary Search Trees

The binary search trees are constructed by inserting keys one at a t ime in the order in
which they appear in the sequence. The entering key is inserted into the left subtree if
i t is strictly less than the key at the root, and into the right subtree if i t is greater than
or equal to it. As a consequence the binary trees tha t result from sequences of nondist inct
keys will have more rightgoing than leftgoing branches. The rightgoing and leftgoing
branches will be analyzed separately.

The depth of a key in the tree is the number of branches in the pa th from the root
to the key. The number of leftgoing branches in this pa th will be called the "leftgoing
depth" of the key, and the number of rightgoing branches will be called its "rightgoing
depth ."

Leflgoing Branches

Suppose tha t D(p~,p2,p3,... ,p,) is the expected sum of the leftgoing depths of all the
l ' s in the b inary search trees constructed from all sequences drawn from {Pl" 1,

Copyr igh t © 1976, Associat ion for Compu t ing Machinery , Inc. General permiss ion to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
Author's address: Computer Sciences Department, IBM Thomas J. Watson Research Center, P.O
Box 218, Yorktown Heights, NY 10598.

Journal of the A~ociation for Comput/ng Machinery, Vol. 23, No 3, July 1976, pp 4Sl...454.

Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 156 (1996) 39%70

Binary search trees constructed from nondistinct keys
with/without specified probabilities

Rainer Kemp

Johann Wo@ng Goethe-Universitiit, Fachbereich Informarik, D-60054 Fran!+rt am Main, German)

Received May 1994; revised November 1994

Communicated by H. Prodinger

Abstract

We investigate binary search trees formed from sequences of nondistinct keys under two
models. In the first model, an input sequence is composed from elements of a given finite
multiset and all possible sequences are equally-likely. In the second model, an input sequence is
composed from n elements of a (possibly infinite) set, where each key has a specified probability;
the n keys are independently chosen from the given set.

Under both models, we shall derive general closed-form expressions for the expected values of
the characteristic parameters defined on the corresponding binary search trees. These para-
meters include the (left, right) depth of a given key, the level of a given external node and the left
(right) side or the internal (external) path length of a search tree. Furthermore, we find some
nonobvious relations between these expected values. In some respects, the second model tends
to the first model for large n. All results are illustrated by concrete examples sometimes showing
unexpected phenomena.

1. Introduction and basic definitions

A binary search tree (BST) is a common choice for a data structure in order to store
a set of keys which can be compared by an ordering relation. The keys are inserted
into the BST one at a time in the order in which they appear in the input sequence.

A root node is created for the first element; a further entering key is inserted into the
left subtree if it is strictly less than the key at the root, and into the right subtree if it is
greater than it. The inserting key is subjected recursively to the same treatment, until
the key itself or a unique insertion position is found (cf. [S, p. 4241). A Pascal data
definition and the insertion algorithm are as follows:’

’ For the sake of simplicity, we assume that the keys are elements of N

0304-3975/96/%15.00 0 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(95)00302-5

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

All these works only consider classic Quicksort:
No sampling to choose pivots.
(No multiway partitioning.)

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 3 / 16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Expected comparisons expressible exactly.

€

C(1,n) = N − 1 + 1
N

xj(C(1, j− 1) + C(j + 1,n))
1≤j≤n
∑

Analysis of Quicksort with equal keys

€

NC(1,n) = N(N − 1) + xjC(1,j− 1) + xj
1≤j≤n
∑ C(j + 1,n)

1≤j≤n
∑

€

(x1 + ... + xn)D(1,n) = x1
2 − x1 + 2x1(x2 + ... + xn) + xjD(1,j− 1)

2≤j≤n
∑

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

1. Define

€

C(x1,...,xn) ≡ C(1,n) to be the mean # compares to sort the file

3. Subtract same equation for

€

x2,..., xn and let

€

D(1,n) ≡ C(1,n) − C(2,n)

2. Multiply both sides by

€

N = x1 + ... + xn

4. Subtract same equation for

€

x1,...,xn−1

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4 / 16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Expected comparisons expressible exactly.

€

C(1,n) = N − 1 + 1
N

xj(C(1, j− 1) + C(j + 1,n))
1≤j≤n
∑

Analysis of Quicksort with equal keys

€

NC(1,n) = N(N − 1) + xjC(1,j− 1) + xj
1≤j≤n
∑ C(j + 1,n)

1≤j≤n
∑

€

(x1 + ... + xn)D(1,n) = x1
2 − x1 + 2x1(x2 + ... + xn) + xjD(1,j− 1)

2≤j≤n
∑

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

1. Define

€

C(x1,...,xn) ≡ C(1,n) to be the mean # compares to sort the file

3. Subtract same equation for

€

x2,..., xn and let

€

D(1,n) ≡ C(1,n) − C(2,n)

2. Multiply both sides by

€

N = x1 + ... + xn

4. Subtract same equation for

€

x1,...,xn−1

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4 / 16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort:

Expected comparisons expressible exactly.

€

C(1,n) = N − 1 + 1
N

xj(C(1, j− 1) + C(j + 1,n))
1≤j≤n
∑

Analysis of Quicksort with equal keys

€

NC(1,n) = N(N − 1) + xjC(1,j− 1) + xj
1≤j≤n
∑ C(j + 1,n)

1≤j≤n
∑

€

(x1 + ... + xn)D(1,n) = x1
2 − x1 + 2x1(x2 + ... + xn) + xjD(1,j− 1)

2≤j≤n
∑

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

1. Define

€

C(x1,...,xn) ≡ C(1,n) to be the mean # compares to sort the file

3. Subtract same equation for

€

x2,..., xn and let

€

D(1,n) ≡ C(1,n) − C(2,n)

2. Multiply both sides by

€

N = x1 + ... + xn

4. Subtract same equation for

€

x1,...,xn−1

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4 / 16

Sedgewick’s analysis for classic Quicksort

Classic Quicksort: Expected comparisons expressible exactly.

€

C(1,n) = N − 1 + 1
N

xj(C(1, j− 1) + C(j + 1,n))
1≤j≤n
∑

Analysis of Quicksort with equal keys

€

NC(1,n) = N(N − 1) + xjC(1,j− 1) + xj
1≤j≤n
∑ C(j + 1,n)

1≤j≤n
∑

€

(x1 + ... + xn)D(1,n) = x1
2 − x1 + 2x1(x2 + ... + xn) + xjD(1,j− 1)

2≤j≤n
∑

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

1. Define

€

C(x1,...,xn) ≡ C(1,n) to be the mean # compares to sort the file

3. Subtract same equation for

€

x2,..., xn and let

€

D(1,n) ≡ C(1,n) − C(2,n)

2. Multiply both sides by

€

N = x1 + ... + xn

4. Subtract same equation for

€

x1,...,xn−1

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 4 / 16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
 within a constant factor of the entropy H

 lower bound:

€

C > NH−N (information theory)
 upper bound:

€

C < 2ln2NH + N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling,

€

C / N → H as sample size increases.

X∗

* subject to some assumptions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5 / 16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
 within a constant factor of the entropy H

 lower bound:

€

C > NH−N (information theory)
 upper bound:

€

C < 2ln2NH + N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling,

€

C / N → H as sample size increases.

X∗

* subject to some assumptions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5 / 16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
 within a constant factor of the entropy H

 lower bound:

€

C > NH−N (information theory)
 upper bound:

€

C < 2ln2NH + N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling,

€

C / N → H as sample size increases.X∗

* subject to some assumptions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5 / 16

The conjecture of Sedgewick and Bentley

Quicksort is optimal

The average number of compares per element C/N is always
 within a constant factor of the entropy H

 lower bound:

€

C > NH−N (information theory)
 upper bound:

€

C < 2ln2NH + N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling,

€

C / N → H as sample size increases.X∗

* subject to some assumptions

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5 / 16

Outline

0 Intro0 Intro

1 Quicksort and Search Trees1 Quicksort and Search Trees

2 Saturated Fringe-Balanced Trees2 Saturated Fringe-Balanced Trees

3 Back to Multiset Permutations3 Back to Multiset Permutations

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 5 / 16

Quicksort & search trees

Classic Fact:

(without duplicates)

Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact:

(without duplicates)

Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact:

(without duplicates)

Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 5

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot)

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3
3

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

4

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

4

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1
3

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

5

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

2

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?
Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Quicksort & search trees

Classic Fact: (without duplicates)
Recursion Tree of Quicksort = Naturally grown BST from input
 Comparisons in Quicksort = Comparisons to built BST

= Comparisons to search input in final BST

How about inputs with duplicates?

Quicksort (Fat-Pivot) Binary Search Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 3 2 5 54 44

1 3 3 32 2 5 5

1 3 33

4 2 1 3 3 5 4 4 3 5 2

4

2

1 3

5

1

 Equivalence holds also with duplicates.

This was only basic Quicksort . . . how about pivot sampling?
Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 6 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

Insertionsort

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2)

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 44

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 44

Insertionsort

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

4

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

4 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

4 2 1

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

4 2 1 3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

4 2 1 3 3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

2 1 3 3 4

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

2 1 43

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4 5

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4 5 4

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4 5 4 4

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4 5 4 42 1

3

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4 5 4 4 5

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4 4 4 5 5

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 5 54

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

2 1 4

5 5

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4

5 5

2 1 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4

5 5

2 1 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4

5 5

2 1 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4

5 5

2 1 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Fringe-balanced trees

k-Fringe-Balanced Search Trees:
Leaves buffer k = 2t+ 1 elements.

If buffer is full, leaf is split new internal node with chosen pivot.

Median-of-5 Quicksort (t = 2) 5-Fringe-Balanced Tree

4 2 1 3 3 5 4 4 3 5 2

2 1 2 4 5 4 4 533 3

5 54 442 1 2

5 5

4 2 1 3 3 5 4 4 3 5 2

3

4

5 5

2 1 2

 Correspondence extends to
Pivot Sampling (any scheme, not only median)
(s-way Partitioning s-ary search trees) not today

 Analyze search trees instead of Quicksort.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 7 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-growing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-grow
hopefully a short prefix!

ing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T searching part ~XS

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-grow
hopefully a short prefix!

ing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.
 profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T searching part ~XS

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-grow
hopefully a short prefix!

ing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.

Two parts of input
always dependent!
(profiles must sum to~x)

Two parts are
independent (i. i.d.!) profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T searching part ~XS

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-grow
hopefully a short prefix!

ing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.

Two parts of input
always dependent!
(profiles must sum to~x)

Two parts are
independent (i. i.d.!) profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Tree-growing and searching

 Quicksort costs = costs to search input ~U = (U1, . . . , Un) in final tree T.

T fixed search cost depends only on profile ~X = (X1, . . . , Xu)

but: T also depends on ~U (Recall: T is built from ~U!)

 direct analysis no simpler than for Quicksort

4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

(k = 1)

tree-growing part T searching part ~XS

Observation: T becomes stationary after each value was inserted!

Fringe-balanced:
 stationary after each value
inserted k = 2t+ 1 times
(up to k duplicates in buffer)

Split input into tree-grow
hopefully a short prefix!

ing part and searching part:
1 We built T until it is stationary, ignoring costs.
2 Determine costs of searching remaining elements.

Two parts of input
always dependent!
(profiles must sum to~x)

Two parts are
independent (i. i.d.!) profile ~XS of search part independent of T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 8 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

 Allow only first nT elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete

 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first nT elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete

 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete

 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete

 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete

 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:

never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 nT · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u

. . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.

can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Bounding the tree-growing part

Goal: ignore tree-growing for analysis.
4 5 5 5 2 3 5 4 2 2 2 5 5 5 4 2 5 1 5 4 2 3 4 2 2 1 2 4 2 2 5 5 2 3 4 2 3 4 1 3 2 2 1 4 4 4 1 2 3 3

tree-growing part T searching part ~XSnT

 Allow only first n
to be chosen

T elements for tree growing.

Problem: if a value occurs < k times in first nT elements, T not complete
 Choose nT large enough to make those degenerate inputs rare.

Require “many duplicates”: E[Xv] = Ω(nε) for ε > 0 Note: implies u =O(n1−ε)

nT = dn1−ε̃e with ε̃ < ε
Binomial tail bound

non-degenerate w.h.p. (Pr[degenerate] = o(n−c) for any c)

Costs to grow T:
never more than 6 n

can’t use large nT

T · u . . . but that is too coarse! (nT · u can be close to n2)

folklore result: random BSTs have logarithmic height w.h.p.
can extend this to fringe-balanced trees nT ·O(logn) = O(n1−ε̃ logn) to build T

 Expected Quicksort costs: E[Cn,~q] = α(~q) · n ± O(n1−δ) (for any δ ∈ (0, ε))

α(~q) = expected search cost in random T

error term covers: tree-growing, sorting samples, degenerate inputs, inputs with high T

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Outline

0 Intro0 Intro

1 Quicksort and Search Trees1 Quicksort and Search Trees

2 Saturated Fringe-Balanced Trees2 Saturated Fringe-Balanced Trees

3 Back to Multiset Permutations3 Back to Multiset Permutations

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 9 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q) elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q) elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln

base e Shannon entropy

(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln

base e Shannon entropy

(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,

only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln

base e Shannon entropy

(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,
only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Search Costs in Saturated Trees

Recall: α(~q) =

u∑
v=1

qv · depthT(v) T from inserting i. i.d. D(~q)

distribution with prob. weights q1, . . . ,qu

elements until saturation

Warmup: Ordinary BSTs (t = 0)

Old result: Allen & Munro 1978:
Self-Organizing Binary Search Trees

α(~q) = 2HQ(~q) + 1 with

HQ(~q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj

Proof sketch:
Sum prob. that i is ancestor of j over all i, j
ancestor ⇐⇒ i first inserted key among i, . . . , j

In the same paper: HQ(~q) < Hln

base e Shannon entropy

(~q)

 α(~q) < 2 ln 2 ·Hld

base 2 entropy

(~q) + 1,
only factor 2 ln 2 ≈ 1.386 from optimal!

Fringe-balanced trees (t > 1)

probability of given value in root:

P[P = 3]P[P = 3]

t = 0

0

q1 q2 q3 q4 q5 q6

1

P[P = 3]P[P = 3]

t = 2

0

q1 q2 q3 q4 q5 q6

1

 prob. that i inserted first among i, . . . j ??

old approach does not work

 Try to generalize this!

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 10 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6)

=

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 ·

0

+ 1
2 ·

H(23 ,
1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)

Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)

Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)

Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)

Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Aggregation of Entropy

One of the defining properties
of Shannon entropy: aggregation

1
2 1

3

1
6

H(12 ,
1
3 ,
1
6) =

1
2

1
2

2
3

1
3

H(12 ,
1
2) + 1

2 · 0 + 1
2 ·H(23 ,

1
3)

P

T1 T2

H
V1 V2

q1 q2 q3 q4 q5 q6

<P =P >P

Z1 Z2

First partitioning step / Root of BST: Split into <P , =P , >P

 H(~q) = H(V1, H, V2) +

2∑
j=1

Vj ·H(Zj)
Z1 =

(
q1
V1
, . . . ,

qP−1

V1

)
Z2 =

(qP+1

V2
, . . . , qu

V2

)
Recurrence for search costs: α(~q) = 1 +

2∑
j=1

Vj · α(Zj)

same shape!

 H(V1, H, V2) vs. 1?

Technical Issues
1 Pivot P is random take expectations over P (and thus V1,2, Z1,2).
2 E

[
Hln(V1, H, V2)

]
≈ E

[
Hln(D, 1−D)

]
= Hk+1 −Ht+1 whereD D= Beta(t+ 1, t+ 1)

but not an inequality in either direction

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 11 / 16

Entropy Bounds for Search Costs

 α(~q) = c ·H(~q) does not seem to hold for any constant c

But we can show

α(~q) 6 c ·H(~q) + d

α~q > c ′ ·H(~q) − d ′

for family of constants (c, d) and (c ′, d ′).

Always have c ′ < αk < c where

αk =
ln 2

Hk+1 −Ht+1

1 1.25 1.5 1.75
−20

−10

0

10

20

upper bound

lower bound

t = 1

rel. difference of c and αk

±
ln
(d
)

α(~q) 6 1.5 · α3H(~q) + 1777

α(~q) > 1
1.5
· α3H(~q) − 1334

 Asymptotically matching values for c and c ′

 α(~q) = αk ·Hld(~q) ± O
(
H(~q)

t+2
t+3 log

(
H(~q)

))

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12 / 16

Entropy Bounds for Search Costs

 α(~q) = c ·H(~q) does not seem to hold for any constant c

But we can show

α(~q) 6 c ·H(~q) + d

α~q > c ′ ·H(~q) − d ′

for family of constants (c, d) and (c ′, d ′).

Always have c ′ < αk < c where

αk =
ln 2

Hk+1 −Ht+1

1 1.25 1.5 1.75
−20

−10

0

10

20

upper bound

lower bound

t = 1

rel. difference of c and αk

±
ln
(d
)

α(~q) 6 1.5 · α3H(~q) + 1777

α(~q) > 1
1.5
· α3H(~q) − 1334

 Asymptotically matching values for c and c ′

 α(~q) = αk ·Hld(~q) ± O
(
H(~q)

t+2
t+3 log

(
H(~q)

))

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12 / 16

Entropy Bounds for Search Costs

 α(~q) = c ·H(~q) does not seem to hold for any constant c

But we can show

α(~q) 6 c ·H(~q) + d

α~q > c ′ ·H(~q) − d ′

for family of constants (c, d) and (c ′, d ′).

Always have c ′ < αk < c where

αk =
ln 2

Hk+1 −Ht+1
1 1.25 1.5 1.75

−20

−10

0

10

20

upper bound

lower bound

t = 1

rel. difference of c and αk

±
ln
(d
)

α(~q) 6 1.5 · α3H(~q) + 1777

α(~q) > 1
1.5
· α3H(~q) − 1334

 Asymptotically matching values for c and c ′

 α(~q) = αk ·Hld(~q) ± O
(
H(~q)

t+2
t+3 log

(
H(~q)

))

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12 / 16

Entropy Bounds for Search Costs

 α(~q) = c ·H(~q) does not seem to hold for any constant c

But we can show

α(~q) 6 c ·H(~q) + d

α~q > c ′ ·H(~q) − d ′

for family of constants (c, d) and (c ′, d ′).

Always have c ′ < αk < c where

αk =
ln 2

Hk+1 −Ht+1
1 1.25 1.5 1.75

−20

−10

0

10

20

upper bound

lower bound

t = 1

rel. difference of c and αk

±
ln
(d
)

α(~q) 6 1.5 · α3H(~q) + 1777

α(~q) > 1
1.5
· α3H(~q) − 1334

 Asymptotically matching values for c and c ′

 α(~q) = αk ·Hld(~q) ± O
(
H(~q)

t+2
t+3 log

(
H(~q)

))

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12 / 16

Entropy Bounds for Search Costs

 α(~q) = c ·H(~q) does not seem to hold for any constant c

But we can show

α(~q) 6 c ·H(~q) + d

α~q > c ′ ·H(~q) − d ′

for family of constants (c, d) and (c ′, d ′).

Always have c ′ < αk < c where

αk =
ln 2

Hk+1 −Ht+1
1 1.25 1.5 1.75

−20

−10

0

10

20

upper bound

lower bound

t = 1

rel. difference of c and αk

±
ln
(d
)

α(~q) 6 1.5 · α3H(~q) + 1777

α(~q) > 1
1.5
· α3H(~q) − 1334

 Asymptotically matching values for c and c ′

 α(~q) = αk ·Hld(~q) ± O
(
H(~q)

t+2
t+3 log

(
H(~q)

))

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 12 / 16

Results in the i. i.d. Model

Time to put the pieces together!

Separation Theorem:
Quicksort costs

in the i. i.d. model
with “many duplicates”
(Ω(nε) duplicates of each value in expectation)

are given by (as n→∞, for any δ ∈ (0, ε))

E[Cn,~q] = α(~q) · n ± O(n1−δ)

Average search costs
in saturated k-fringe-balanced trees:

(as H→∞)

α(~q) = αk ·H ± O
(
H

t+2
t+3 logH

)
H = Hld(~q)

αk =
ln 2

Hk+1 −Ht+1

Quicksort Costs (i. i.d. model)

Under the assumptions above, we have for any δ ∈
(
0, 1
t+3

)
E[Cn,~q] = αkHld(~q) · n ± O

(
(H(~q)1−δ + 1)n

)
.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13 / 16

Results in the i. i.d. Model

Time to put the pieces together!

Separation Theorem:
Quicksort costs

in the i. i.d. model
with “many duplicates”
(Ω(nε) duplicates of each value in expectation)

are given by (as n→∞, for any δ ∈ (0, ε))

E[Cn,~q] = α(~q) · n ± O(n1−δ)

Average search costs
in saturated k-fringe-balanced trees:

(as H→∞)

α(~q) = αk ·H ± O
(
H

t+2
t+3 logH

)
H = Hld(~q)

αk =
ln 2

Hk+1 −Ht+1

Quicksort Costs (i. i.d. model)

Under the assumptions above, we have for any δ ∈
(
0, 1
t+3

)
E[Cn,~q] = αkHld(~q) · n ± O

(
(H(~q)1−δ + 1)n

)
.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13 / 16

Results in the i. i.d. Model

Time to put the pieces together!

Separation Theorem:
Quicksort costs

in the i. i.d. model
with “many duplicates”
(Ω(nε) duplicates of each value in expectation)

are given by (as n→∞, for any δ ∈ (0, ε))

E[Cn,~q] = α(~q) · n ± O(n1−δ)

Average search costs
in saturated k-fringe-balanced trees:

(as H→∞)

α(~q) = αk ·H ± O
(
H

t+2
t+3 logH

)
H = Hld(~q)

αk =
ln 2

Hk+1 −Ht+1

Quicksort Costs (i. i.d. model)

Under the assumptions above, we have for any δ ∈
(
0, 1
t+3

)
E[Cn,~q] = αkHld(~q) · n ± O

(
(H(~q)1−δ + 1)n

)
.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13 / 16

Results in the i. i.d. Model

Time to put the pieces together!

Separation Theorem:
Quicksort costs

in the i. i.d. model
with “many duplicates”
(Ω(nε) duplicates of each value in expectation)

are given by (as n→∞, for any δ ∈ (0, ε))

E[Cn,~q] = α(~q) · n ± O(n1−δ)

Average search costs
in saturated k-fringe-balanced trees:

(as H→∞)

α(~q) = αk ·H ± O
(
H

t+2
t+3 logH

)
H = Hld(~q)

αk =
ln 2

Hk+1 −Ht+1

Quicksort Costs (i. i.d. model)

Under the assumptions above, we have for any δ ∈
(
0, 1
t+3

)
E[Cn,~q] = αkHld(~q) · n ± O

(
(H(~q)1−δ + 1)n

)
.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13 / 16

Outline

0 Intro0 Intro

1 Quicksort and Search Trees1 Quicksort and Search Trees

2 Saturated Fringe-Balanced Trees2 Saturated Fringe-Balanced Trees

3 Back to Multiset Permutations3 Back to Multiset Permutations

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 13 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Back to the Multiset Model

How about the multiset model?

Many duplicates profile ~X concentrated around E[~X] = ~qn

1 Replace multiset model with profile~x by i. i.d. model with ~q =~x/n

2 Use Chernoff bounds to bound difference between costs.
 Need Chernoff bound for multinomial variables.

Same result holds for multiset model
with “many duplicates”, i.e., xv = Ω(nε).

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 14 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Conclusion

Findings
First analysis of median-of-k Quicksort on equal keys . . . for “many duplicates”.
 Same relative speedup as for random permutations.

Partial Answer to conjecture of Sedgewick & Bentley:
Median-of-k Quicksort approaches lower bound for k→∞.

Not in this talk: For uniform ~q = (1u , . . . ,
1
u) with u = O(n1−ε)

better error bounds
extension for multiway partitioning

Open Problems

Get rid of “many duplicates” restriction; n1−ε seems (to me) best possible so that
inputs are non-degenerate w.h.p.
tree-building costs are still negligible
difference between i. i.d. model and multiset model is negligible
the entropy is a lower bound

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 15 / 16

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 16 / 16

Icons made by Freepik and Gregor Cresnar from www.flaticon.com.

Sebastian Wild Quicksort Is Optimal For Many Equal Keys 2017-06-19 17 / 16

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/gregor-cresnar
www.flaticon.com

	Don't we know everything about Quicksort by now?
	Setup
	Previous work on equal keys
	Sedgewick's analysis for classic Quicksort
	The conjecture of Sedgewick and Bentley
	Quicksort & search trees
	Fringe-balanced trees
	Tree-growing and searching
	Bounding the tree-growing part
	Search Costs in Saturated Trees
	Aggregation of Entropy
	Entropy Bounds for Search Costs
	Results in the i. i. d. Model
	Back to the Multiset Model
	Conclusion
	

